Министерство образования и науки Российской Федерации ФГБОУ ВО «Уральский государственный педагогический университет» Институт математики, информатики и информационных технологий Кафедра высшей математики

Построение корреляционной модели и статистический анализ данных по термодинамическим свойствам металлов с гексагональной кристаллической структурой

Выпускная квалификационная работа

Квалификационная работа	Исполнитель:	
допущена к защите	Мордяшов Иван Николаевич	
Зав. кафедрой	обучающийся в группе Б – 42	
«»2017 г.	подпись	
подпись Руководитель ОПОП:	Научный руководитель:	
	Бодряков В. Ю.	
	Заведующий кафедрой высшей	
	математики	
Подпись	полпись	

Оглавление

ГЛАВА 1. Методы обработки статистических данных исследования и
модельные представления о них. Описание объектов исследования
(Литературный Обзор)
Математические и компьютерные методы и средства поиска, обработки, анализа и интерпретации данных
Метод наименьших квадратов (МНК)16
Предпосылки МНК (Условия Гаусса-Маркова):18
Теплоемкость и коэффициент теплового расширения твердых тел 19
Физические свойства и применение исследуемых металлов
ГЛАВА 2. Построение корреляционной модели и статистический анализ данных по термодинамическим свойствам металлов с гексагональной кристаллической структурой (на примере Mg, Zn, Ti)
Описание процесса построения корреляционной модели на примере магния 27
Построение корреляционной модели и статистический анализ данных по теплоемкости и термодинамическим свойствам Mg28
Построение корреляционной модели и статистический анализ данных по теплоемкости и тепловому расширению цинка: Zn
Построение корреляционной модели и статистический анализ данных по теплоемкости и тепловому расширению титана: Ті
Заключение
Библиографический список54
Приложение 1
Приложение 2
Приложение 3
Приложение 4
Приложение 571
Приложение 674
Приложение 777
Приложение 878
Приложение 9

Введение

Новейшие разработки в области электроники, компьютерных и информационных технологий за последнее время привели к тому, что одним из главных направлений развития современной науки является значимое увеличение объемов, полученных экспериментальным путем данных, и связанные с этим проблемы их хранения и обработки. В последнее время в мировой науке намечается устремление создания экспериментальных установок нового поколения; в научных экспериментах, таких как фиксирование метеорологических данных, задачи математической биологии или астрономические наблюдения, генерируются огромные массивы данных. Например, один только архив телескопа «Хаббл», накопленный за 15 лет, занимает около 25 Тбайт. Лавинообразно увеличивается число разного рода научных публикаций, в том числе и в первую очередь исключительно «электронных». т.е. публикуемых только на веб-страницах авторов, а также различной «служебно-научной» документации: отчеты о проделанной работе, результатах проектов, персональная информация научных сотрудников, технологии, патенты, программы фондов, экспертные оценки и т. п. [42].

Существенное расхождение задач оперативной и аналитической обработки данных стало проявляться еще на заре развития технологий баз данных. Термин хранилища данных (Data Warehouse) был предложен Биллом Инмоном еще в 70-х годах прошлого столетия, однако активный интерес к этим технологиям проявился лишь 20 лет спустя, когда, во-первых, возникла реальная потребность в подобного рода системах и, во-вторых, стали доступны компьютеры с необходимой вычислительной мощностью [53].

Практически каждый специалист в своей профессиональной деятельности сталкивается с необходимостью поиска, обработки и анализа статистической информации, т.е. необходимостью проводить операции над количественными данными, которые осуществляются в соответствии с

математическими законами. Проблема предварительной или первичной обработки данных означает также, что некоторые из технических специалистов, пользующихся сегодня наибольшим спросом, тратят большую часть времени на монотонную работу по сортировке и организации наборов данных, прежде чем они будут проанализированы. Это не очень хорошо масштабируется и значительно затрудняет работу с большими данными. По мере увеличения объема данных трудности становится больше [39].

Сказанное подтверждает актуальность подготовки профессионалов в области поиска, обработки, анализа и интерпретации информации. Для восполнения нехватки специалистов-аналитиков уже разрабатываются специальные учебные курсы, как зарубежные, так и отечественные [8, 17, 18].

Настоящая выпускная квалификационная работа (ВКР) рассматривает применение математических методов И прикладного программного обеспечения для построения корреляционной модели и статистического термодинамическим свойствам анализа данных ПО металлов c гексагональной кристаллической структурой.

При написании данной выпускной квалификационной работы, формируются и развиваются общепрофессиональные и профессиональные компетенции, такие как:

- 1. способность использовать базовые знания естественных наук, математики и информатики, основные факты, концепции, принципы теорий, связанных с прикладной математикой и информатикой (ОПК-1);
- 2. способность приобретать новые научные и профессиональные знания, используя современные образовательные и информационные технологии (ОПК-2);
- 3. способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической

- культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности (ОПК-3);
- 4. способность собирать, обрабатывать и интерпретировать данные современных научных исследований, необходимые для формирования выводов по соответствующим научным исследованиям (ПК-1);
- 5. способностью понимать, совершенствовать и применять современный математический аппарат (ПК-2);
- 6. способностью осуществлять целенаправленный поиск информации о новейших научных и технологических достижениях в информационно-телекоммуникационной сети "Интернет" (далее сеть "Интернет") и в других источниках (ПК-5).

Целью исследования является формирование и развитие указанных выше и других общепрофессиональных и профессиональных компетенций.

Объектом исследования является формирование компетенций, на основе построения корреляционной модели и применения анализа статистических данных.

Предметом исследования является методика статистической обработки данных по термодинамическим свойствам металлов с гексагональной кристаллической структурой.

Для достижения цели решались следующие задачи:

- 1. Освоение математических инструментов для обработки и анализа статистических данных.
- 2. Освоение компьютерных средств для поиска, обработки, анализа и интерпретации статистических данных (пакеты MS Word, MS Excel).
- 3. Освоение математической модели исследуемого явления, порождающего статистические данные для анализа

(термодинамическая модель формирования теплоемкости и коэффициента теплового расширения твердого тела).

- 4. Построение «би-линейной» модели.
- 5. Оценка практической значимости исследуемых веществ для создания новых материалов и устройств.
- 6. Поиск и предварительный анализ первичных данных исследований (температурные зависимости теплоемкости и коэффициента теплового расширения Mg, Zn, Ti). Фиксация результатов поиска в файлах MS Word и MS Excel. Создание коллекции первичных данных.
- 7. Углубленный статистический анализ первичных данных (построение усредняющего тренда, сглаживание, корреляционный анализ, прогнозирование).
- 8. Формулирование содержательных выводов по результатам обработки и анализа данных.
- 9. Формулирование кратких методических рекомендаций по формированию у студентов вуза профессиональных компетенций для студентов, сопряженных с поиском, обработки, анализом и интерпретацией данных.

Гипотеза исследования: между температурными зависимостями теплоемкости C(T) и объемного коэффициента теплового расширения o(T)твердых тел, в том числе, исследуемых здесь металлов с гексагональной кристаллической структурой, существует выраженная корреляционная зависимость o(T) вплоть до температур плавления тел T_{nn} . Притом, эта o(C)«би-линейна» корреляционная зависимость c изломом вверх, приходящемся на температуру, порядка температуры Дебая heta и при достижении теплоемкостью своего классического предела Дюлонга и Пти. Основанием ДЛЯ выдвижения гипотезы являются предшествующие исследования руководителя [28, 22, 21, 24, 2, 27, 25, 26, 23, 3, 4, 5, 29].

ГЛАВА 1. Методы обработки статистических данных исследования и модельные представления о них. Описание объектов исследования (Литературный Обзор)

Математические и компьютерные методы и средства поиска, обработки, анализа и интерпретации данных

В основе большинства процедур, связанных с поиском, анализом, обработкой и интерпретацией информации (данных) лежит статистика. Статистика — это наука о сборе, измерении и анализе больших массивов количественных данных. Математическая статистика — раздел математики, изучающий математические методы обработки, сбора, систематизации и обработки результатов статистических данных.

Сейчас имеются все основания говорить о формировании новой культурной составной части — информационной культуры, которая становится элементом общей культуры человечества. Её основой являются знания об информационной среде и законах её функционирования, умение ориентироваться в информационных потоках.

Одна из составляющих информационной культуры человека — знания и навыки эффективного использования информации. Информационная культура предполагает разностороннее умение поиска нужной информации и её использования.

В узком смысле слова «информационная культура» — это информационная грамотность, включающая в себя:

- оптимальные способы обращения со знаками, моделями, данными, информацией и представление их заинтересованному потребителю для решения теоретических и практических задач;
- механизмы совершенствования технических сред производства, хранения и передачи информации;

• развитие системы обучения, подготовки человека к эффективному использованию информационных средств, информации и телекоммуникаций.

Информация — это совокупность собранных и аналитически обработанных сведений, требующихся для принятия оптимального решения при устранении некоторой проблемы, а также сам процесс передачи или получения этих сведений [33].

При необходимости анализа множественных статистических данных пользуются различными методами количественной обработки информации [36, 59, 61, 34]; их принято подразделять на две группы: **первичные и вторичные**.

При помощи **первичных** методов статистической обработки данных исследователь упорядочивает информацию об объекте и предмете изучения. На этой стадии первоначальные данные группируются по тем или иным критериям, заносятся в сводные таблицы. В этой работе данные по теплоемкости и коэффициенту теплового расширения были сгруппированы по температурному признаку, приведены к единой системе единиц (системе СИ). Таблица из первично обработанных данных позволяет исследователю сделать первые предположения о характере всей совокупности данных в целом: однородности и неоднородности, компактности и разбросанности и т.д. Представив эту информацию в наглядной форме (например, в виде графика), можно получить первоначальные сведения об их распределении и формируемом трендовом поведении соответствующего свойства.

Основными методами первичного статистического анализа являются: вычисление мер центральной тенденции (медиана, мода), и мер разброса (изменчивости) данных – дисперсия, среднеквадратическое отклонение и др.

Меры центральной тенденции – это статистические показатели, вокруг которых группируются остальные данные. Данные величины являются обобщением всей выборки статистических данных, которое не только

позволяет судить по ним обо всей выборке в целом, но и дает возможность сравнивать разные выборки, разные серии между собой. Основными мерами центральной тенденции в первичной обработке статистической информации являются: выборочное среднее, медиана.

Обычно, выборочное среднее применяется при стремлении к наибольшей точности в определении центральной тенденции. Медиана вычисляется в том случае, если в совокупности есть «нетипичные» данные, которые существенно влияют на среднее. Мода используется в ситуациях, когда не нужна высокая точность, но важна быстрота определения меры центральной тенденции. Вычисление этих трех показателей производится также для оценки распределения данных. Если распределение компактно (типа нормального), то значения выборочного среднего, медианы и моды либо равны, либо близки к таковым.

Меры разброса (изменчивости) — это статистические показатели, которые характеризуют различия между отдельными значениями генеральной совокупности. Они позволяют делать выводы о степени однородности (неоднородности) полученного множества, его компактности, а косвенно и о надежности полученных данных, а значит и вытекающих из них результатов.

Размах R — это разность между наибольшей и наименьшей вариантами:

$$R = x_{max} - x_{min.}$$

Среднее отклонение θ — это среднее арифметическое абсолютных отклонений.

$$\theta = \frac{\Sigma d}{n}$$

где $d_i = |x_i - x_g|$, x_g — среднее выборки, X — конкретное значение, n — объем выборки [36].

Множество всех конкретных отклонений берется по абсолютной величине потому, что эта величина характеризует изменчивость данных, и если не брать ее по модулю, то сумма всех конкретных отклонений будет

равна нулю, и мы не получим информации об их изменчивости. Среднее отклонение служит для характеристики рассеяния вариационного ряда.

Дисперсия D характеризует отклонение от средней выборочной величины в данной выборке. Вычисление дисперсии позволяет избежать нулевой суммы конкретных разниц отклонений $(d_i = xi - x_g)$ не через их абсолютные величины, а через их возведение в квадрат:

$$D = \frac{\Sigma d^2}{n-1}$$

Среднеквадратическое (стандартное) отклонение (СКО) σ . При вычислении дисперсии, отдельные отклонения были возведены в квадрат, поэтому полученная величина оказывается далекой от первоначальных отклонений и не дает о них наглядного представления, что может повлечь за собой ошибки при вычислении средних отклонений. Чтобы этого избежать и характеристику, сопоставимую co средним отклонением, проделывают обратную математическую операцию – ИЗ извлекают квадратный корень. Его положительное значение и принимается за меру изменчивости, именуемую среднеквадратическим, или стандартным, отклонением (СКО):

$$\sigma = \sqrt{D} \approx \sqrt{\frac{\Sigma d^2}{n}}$$
 – для больших выборок $(n > 30)$;

$$\sigma = \sqrt{\overline{D}} \approx \sqrt{\frac{\Sigma d^2}{n\!-\!1}}$$
 – для малых выборок $(n < 30)$.

С помощью **вторичных методов** статистической обработки экспериментальных данных непосредственно проверяются, доказываются или опровергаются гипотезы, связанные с экспериментом. Эти методы сложнее, чем методы первичной статистической обработки, и требуют от исследователя хорошей подготовки в области высшей математики, теории вероятностей и статистики. К числу наиболее используемых методов вторичной обработки информации относят: корреляционный

(регрессионный) анализ, проверку статистических гипотез о виде или числовых значениях параметров распределений и др.

Поскольку исследование в этой работе будет производиться над большим числом данных, то для лучшего пояснения понятия регрессии, необходимо ввести определение стохастической закономерности. Закономерности, проявляющиеся только при большом числе единиц совокупности и только в массовом процессе, называют стохастическими (вероятностными).

При стохастической закономерности для заданных значений зависимой (объясняемой) переменной можно указать ряд значений объясняющей переменной, случайно рассеянных в интервале. Каждому фиксированному соответствует значению аргумента определенное статистическое распределение значений функции. Это обусловливается тем, что зависимая переменная, кроме выделенной переменной, подвержена влиянию ряда неконтролируемых или неучтенных факторов, а также тем, что измерение переменных неизбежно сопровождается некоторыми случайными ошибками. Поскольку значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а только указаны с определенной вероятностью. Появляющиеся значения зависимой переменной являются реализациями случайной величины. Под случайной величиной следует понимать функцию, отображающую пространство элементарных событий во множество действительных чисел.

Обратимся теперь К **ОИТКНОП** регрессии. Регрессия ЭТО односторонняя стохастическая зависимость. Она устанавливает соответствие случайными между переменными. Односторонняя стохастическая зависимость выражается с помощью функции, которая, для отличия ее от строгой математической функции, называется функцией регрессии или просто регрессией. Здесь подчеркивается лишь характер функции регрессии, показывая тем самым разницу между функциональной зависимостью и регрессией. При функциональной зависимости факторный признак (x) полностью определяет результативный признак (y). Кроме того, при функциональной зависимости функция обратима. Функция регрессии этим свойством не обладает. Только в предельном случае, когда стохастическая зависимость переходит в функциональную, переход из одного уравнения регрессии в другое становится возможным, т. е. начинает проявляться свойство обратимости [59, с 15].

Функция регрессии формально устанавливает соответствие между переменными, хотя они могут не состоять в причинно-следственных отношениях. Однако задача научного исследования заключается определении причинных зависимостей. Лишь понимание истинных причин придает нашему знанию действенный характер, предвидеть явления, учитывать или надлежащим образом изменять их, чтобы вызвать новые, желаемые следствия в исследуемой области. В противном случае легко могут возникнуть так называемые нонсенс-регрессии (ложные, абсурдные), которые не имеют практического смысла. [59]

Следующий метод статистической обработки, с помощью которого выясняется связь или прямая зависимость между двумя рядами экспериментальных данных, носит название метод корреляций. Он показывает, каким образом одна величина влияет на другую или связана с ней в своей динамике.

Понятие корреляции в принятом нами значении появилось почти в середине XIX века благодаря работам сэра Фрэнсиса Гальтона (двоюродного брата Чарльза Дарвина) и Карла Пирсона. Ф. Гальтон применил для корреляции следующую форму записи: co-relation, откуда становится понятным значение этого выражения — связь, соотношение. Сначала исследования корреляции проводились в области естественных наук, в первую очередь в биологии. Лишь позднее применение методов

корреляционного анализа распространилось и на математику, где они привели к весьма полезным результатам [59, с. 45 – 46].

Корреляция в широком смысле слова означает связь, соотношение между объективно существующими явлениями и процессами. Однако для раскрытия и исследования причинных связей, вследствие их многообразия недостаточно этого общего определения. Мало установить только наличие связи между двумя или несколькими явлениями. Связи между явлениями и процессами могут быть различны по силе. При измерении степени интенсивности, тесноты, прямолинейности, четкости, строгости связи проблема корреляции рассматривается в узком смысле. Исходя из этого, можно сделать следующее определение: если случайные переменные причинно-обусловлены и можно, в вероятностном смысле, высказываться об их связи, то имеется корреляционная связь, или корреляция.

Понятия регрессии и корреляции непосредственно связаны между собой. В то время как в корреляционном анализе оценивается сила стохастической связи, в регрессионном анализе исследуется ее форма. С помощью оценки значимости решают вопрос о реально объективном существовании связи. В корреляционном и регрессионном анализе много общих вычислительных процедур. Оба вида анализа служат для установления причинных соотношений между явлениями и для определения наличия или отсутствия связи.

Причинное влияние может быть выражено в виде функциональной или корреляционной связи. Но из этого совсем не следует обратное утверждение, что за любой корреляционной или функциональной связью скрывается причинная зависимость. С помощью корреляционного анализа нельзя указать, какое явление принимать в качестве причины, а какое — в качестве следствия. Корреляция лишь дает оценку силы, или тесноты, связи [59, с. 18 — 19].

Вопрос о наличии причинных отношений между явлениями в каждом конкретном случае решается исследователем исходя из логически-профессиональных рассуждений, предшествовавших по возможности корреляционному анализу. Последнее требование, однако, не должно быть обязательным условием, так как иногда объяснение причины и следствия можно получить только после эмпирического описания связи. Не приходится сомневаться, что в любом случае этот метод математической статистики служит весьма полезным инструментом для раскрытия связей между явлениями.

Проблема ложной корреляции возникает при использовании индексов, процентных чисел, а также когда к обеим сопоставляемым величинам добавляется или из каждой вычитается одна и та же величина. Ложная корреляция может возникнуть и в том случае, когда одна переменная входит в состав другой и тем самым формально обусловливает соответствие обеих переменных друг другу.

Взаимосвязь между переменными необходимо охарактеризовать численно, чтобы, можно было рассчитать степень влияния одной величины на другую. Для этого вводится коэффициент корреляции.

Поскольку в данной работе рассматривается корреляция двух параметров, то приведем пример вычисления коэффициента парной корреляции. Есть массив из n точек $\{x_{I,i}, x_{2,i}\}$. Рассчитываются средние значения для каждого параметра:

$$\overline{x_1} = \frac{\sum x_{1,i}}{n}$$
, $\overline{x_2} = \frac{\sum x_{2,i}}{n}$.

И коэффициент корреляции:

$$r = \frac{\sum (x_{1,i} - \overline{x_1}) \cdot (x_{2,i} - \overline{x_2})}{\sqrt{\sum (x_{1,i} - \overline{x_1})^2} \cdot \sqrt{\sum (x_{2,i} - \overline{x_2})^2}},$$

где r изменяется в пределах от -1 до 1. В данном случае это линейный коэффициент корреляции, он показывает линейную взаимосвязь между x_1 и x_2 : r равен 1 (или -1), если связь линейна. Коэффициент r является случайной

величиной, поскольку вычисляется из случайных величин. Для него можно выдвигать и проверять следующие гипотезы:

1. Коэффициент корреляции значимо отличается от нуля (т.е. есть взаимосвязь между величинами). Тестовая статистика (статистический критерий) для большой выборки объема *п* находится по формуле:

$$\xi = \left(0.5 \cdot ln\left(\frac{1+r}{1-r}\right) - \frac{|r|}{2(n-1)}\right)\sqrt{n-3}$$

и сравнивается с табличным значением t-коэффициента Стьюдента $t(p = 0.95, f = \infty) = 1.96$ (число степеней свободы f велико).

Если тестовая статистика больше табличного значения, то коэффициент значимо отличается от нуля. По формуле видно, что чем больше объем выборки n, тем лучше (больше тестовая статистика, выше вероятность того, что коэффициент значимо отличается от нуля)

2. Отличие между двумя коэффициентами корреляции значимо:

Тестовая статистика:

$$\xi = 0.5 \cdot \ln \left(\frac{(1+r_1)(1-r_2)}{(1-r_1)(1+r_2)} \right) \cdot \frac{1}{\sqrt{\frac{1}{n_1-3} + \frac{1}{n_2-3}}}$$

Также сравнивается с табличным значением $t(p, \infty)$ [11].

Корреляционный анализ - один из наиболее широко используемых статистических методов. При своей относительной простоте он может быть очень полезен как для тестирования имеющихся гипотез, так и в поисковом исследовании, когда предположения о связях и взаимозависимостях только формируются.

Методами корреляционного анализа решаются следующие задачи:

- 1) Взаимосвязь. Есть ли взаимосвязь между параметрами?
- 2) Прогнозирование. Если известно поведение одного параметра, то можно предсказать поведение другого параметра, коррелирующего с первым.

3) Классификация и идентификация объектов. Корреляционный анализ помогает подобрать набор независимых признаков для классификации.

Для усреднения данных в данной работе использовалось **скользящее** усреднение. Весьма простой и эффективный способ усреднения — скользящее усреднение. Его суть заключается в расчете для каждого значения аргумента среднего значения по нескольким соседним данным. Число w, участвующих в расчете такого среднего, называют окном скользящего усреднения: чем оно больше, тем больше данных участвуют в расчете среднего и тем более сглаженная кривая получается. Формула для расчета скользящего среднего такова: $Y_j(w) = \frac{\sum_{i=j}^w y_i}{w}$. [54]

Метод наименьших квадратов (МНК)

Пусть $\hat{y}_i = \mathcal{G}_0 + \mathcal{G}_i x_i$, $e_i = y_i - \hat{y}_i$ — наблюдаемые значения ошибок регрессии (остатки регрессии).

Согласно методу наименьших квадратов прямую L следует выбирать так, чтобы сумма квадратов отклонений была наименьшей, т.е.

$$\sum_{i=1}^n e_i \to min.$$

Рассмотрим функцию

$$Q(\mathcal{G}_0, \mathcal{G}_l) = e_l^2 + e_2^2 + ... + e_n^2 = \sum e_i^2 = \sum (y_i - \widehat{y}_i)^2 = \sum (\beta_0 + \beta_1 x_i - y_i)^2$$
 и минимизируем ее средствами математического анализа. Для этого докажем, что функция $Q(\mathcal{G}_0, \mathcal{G}_l)$ имеет единственную критическую точку и которая является точкой минимума.

Найдем частные производные и приравняем их к нулю. Получим систему уравнений:

$$\mathbf{B}_{0}n + \mathbf{B}_{1}\sum x_{i} = \sum y_{i},$$

$$\mathcal{G}_0 \sum x_i + \mathcal{G}_1 \sum x_i^2 = \sum x_i y_i,$$

которая называется системой нормальных уравнений.

Введем средние величины:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}, \ \bar{x}^2 = \frac{\sum_{i=1}^{n} x_i^2}{n}, \ \bar{y} = \frac{\sum_{i=1}^{n} y_i}{n},$$

$$\bar{x}\bar{y} = \frac{\sum_{i=1}^{n} x_i y_i}{n}, \quad \bar{y}^2 = \frac{\sum_{i=1}^{n} y_i^2}{n}$$

и подставим в систему нормальных уравнений.

Получим систему

$$\begin{cases} \beta_0 + \bar{x}\beta_1 = \bar{y}, \\ \bar{x}\beta_0 + \overline{x^2}\beta_1 = \bar{x}\bar{y} \end{cases}$$

решая которую, получим ответы:

$$\begin{cases} \beta_0 = \bar{y} - \bar{x}\beta_1 \\ \beta_1 = \frac{\bar{x}\bar{y} - \bar{x}\bar{y}}{\bar{x}^2 - (\bar{x})^2} \end{cases},$$

Таким образом, функция $Q(\mathcal{B}_0, \mathcal{B}_l)$ имеет единственную критическую точку.

Определим частные производные второго порядка и покажем, что величина

$$\varsigma(\beta_0, \beta_1) = Q''_{\beta_0, \beta_0} Q''_{\beta_1, \beta_1} - (Q''_{\beta_0, \beta_1})^2$$

положительна.

Прямая L проходит через точку (\bar{x}, \bar{y}) , поэтому уравнение прямой L имеет вид:

$$y = \bar{y} + \beta_1(x - \bar{x})$$

Введем выборочные ковариации:

$$k_{11} = \overline{x^2} - (\bar{x})^2 > 0,$$

$$k_{1y} = \overline{xy} - \bar{x}\bar{y},$$

$$k_{yy} = \overline{y^2} - (\bar{y})^2 > 0.$$

Тогда:

$$\beta_1 = \frac{k_{1y}}{k_{11}}.$$

Определим выборочный коэффициент корреляции:

$$r_{\scriptscriptstyle\rm B} = \frac{k_{1y}}{\sqrt{k_{11}} * \sqrt{k_{yy}}}$$

Тогда имеет место равенство:

$$\widehat{b_1} = r_{\scriptscriptstyle B} * \frac{\sqrt{k_{yy}}}{\sqrt{k_{11}}}.$$

Для получения по МНК наилучших результатов требуется, чтобы выполнялся ряд предпосылок относительно случайного отклонения.

Предпосылки МНК (Условия Гаусса-Маркова):

- 1. Все ошибки \mathcal{E}_i случайные величины, а регрессоры x_{ij} неслучайные (детерминированные) переменные.
- 2. Математическое ожидание каждой ошибки \mathcal{E}_i равно нулю: $M(\mathcal{E}_i) = 0$.
- 3. (Условие гомоскедастичности равноизменчивости ошибок). Дисперсии всех ошибок одинаковы: $D(\mathcal{E}_i) = \sigma^2 = const.$
- 4. (Условие отсутствия автокорреляции). Различные ошибки не коррелированы между собой.
- 5. Ошибки \mathcal{E}_{i} нормально распределенные случайные величины.
- 6. Матрица

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1m} \\ 1 & x_{21} & x_{22} & \dots & x_{2m} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nm} \end{pmatrix}$$

имеет ранг, равный m+1.

Модель, удовлетворяющая условиям 1 – 6, называется классической (нормальной) линейной регрессионной моделью. [44, 45, 30, 40]

Теплоемкость и коэффициент теплового расширения твердых тел

В исследовании, которое мы проводили, понятия теплоемкости и коэффициента теплового расширения весьма существенны, поэтому для понимания сути и задач исследования введем понятия теплоемкости и коэффициента теплового расширения твердых тел [52, 62, 51, 35, 48, 46, 41, 20, 56]. **Теплоёмкость вещества** — физическая величина, показывающая количество теплоты, необходимое для изменения температуры 1 кг этого вещества на 1°C.

Согласно более строгому определению, теплоемкость – термодинамическая величина, определяемая выражением:

$$C = \lim_{\Delta T \to 0} \left(\frac{\Delta Q}{\Delta T} \right) = \frac{\delta Q}{dT},\tag{1}$$

где ΔQ - количество теплоты, сообщенное системе и вызвавшее изменение ее температуры на ΔT . Отношение конечных разностей $\Delta Q/\Delta T$ называется средней теплоемкостью, отношение бесконечно малых величин $\delta Q/dT$ — истинной теплоемкостью. Поскольку δQ не является полным дифференциалом функции состояния, то и теплоемкость зависит от пути перехода между двумя состояниями системы. Различают теплоемкость системы в целом (Дж/K), удельную теплоемкость [Дж/(г·K)], молярную теплоемкость [Дж/(моль·К)]. При первичной обработке первоисточников данных по теплоемкости изучаемых веществ значения C(T) приводились к единой системе единиц (системе СИ), т.е. к Дж/(моль·К).

Важнейшими видами теплоемкости являются теплоемкость C_v при постоянном объеме V и теплоемкость C_p при постоянном давлении p.

При низких температурах теплоемкость одноатомных кристаллов пропорциональна кубу абсолютной температуры (закон Дебая): $C_V \sim T^3$. При высоких температурах C_V стремится к предельному значению 3R, определяемому классической теорией и не зависящему от природы атомов

(закон Дюлонга и Пти). Предельное значение $C_V = 3R$ достигается уже при обычных температурах у металлов. Для некоторых простых соединений с числом атомов в молекуле n предельное значение $C_V = 3nR$ [NaCl, MnS (n=2), PbCl₂ (n=3) и др.]

Для кристаллических твердых тел существует характеристическая температура θ_D , названная температурой Дебая, разделяющая «классическую область» температур $T > \theta_D$, в которой теплоемкость описывается законом Дюлонга и Пти и «квантовую область» $T \ll \theta_D$. Температура Дебая связана с предельной частотой колебаний атомов в кристаллической решетке и зависит от упругих постоянных вещества [46].

Температуру Дебая обычно находят путём подгонки наблюдаемых значений удельной теплоёмкости к формуле, даваемой теорией Дебая, в точке, где величина теплоёмкости составляет половину от значения, соответствующего закону Дюлонга и Пти. Для сложных кристаллических решёток вводят характеристическую температуру Дебая, которая подбирается так, чтобы соответствующие формулы правильно описывали наблюдаемые температурные зависимости, например теплоёмкости. При этом характеристическая Дебая температура сама является функцией температуры [34, 55, 50].

Основным экспериментальным методом определения теплоемкости является **калориметрия**.

Коэффициент теплового расширения (КТР) — физическая величина, характеризующая относительное изменение объёма или линейных размеров тела с увеличением температуры на 1 К при постоянном давлении. Имеет размерность обратной температуры. Различают коэффициенты объёмного и линейного расширения. Тепловое расширение представляет собой изменение размеров тел при их нагревании. Количественно тепловое расширение всех тел при постоянном давлении характеризуется коэффициентом объемного расширения β , величину которого можно определить выражением:

$$\beta = \frac{1}{V_T} \frac{\Delta V}{\Delta T},\tag{2}$$

где $V_{\rm T}$ – объем тела при температуре T, $\Delta V = V - V_T$ – изменение объема тела при изменении температуры на $\Delta T = T - T_0$.

Для характеристики теплового расширения твердых тел вводится также коэффициент линейного теплового расширения α, который определяется соотношением:

$$\alpha = \frac{1}{\ell_T} \frac{\Delta \ell}{\Delta T},\tag{3}$$

где ℓ_T — первоначальная длина тела в некотором направлении при температуре T, $\Delta \ell = \ell - \ell_T$ — изменение длины тела в этом направлении при изменении температуры на $\Delta T = T - T_0$.

Объем и длина тела после нагревания на ΔT определяются как:

$$V = V_T (1 + \beta \Delta T), \tag{4}$$

$$\ell = \ell_T (1 + \alpha \Delta T). \tag{5}$$

Коэффициенты линейного расширения твердых тел малы и составляют порядка $10^{-6} \div 10^{-5} \ \mathrm{K}^{-1}$. Вследствие анизотропии кристаллов (т.е. неодинаковости их свойств в различных направлениях) коэффициент линейного расширения кристалла может быть различным для различных направлений. Значения коэффициентов линейного теплого расширения вдоль кристаллографических осей называются главными коэффициентами. Коэффициент объемного расширения кристалла приблизительно равен сумме его главных коэффициентов линейного расширения:

$$\beta = \alpha_1 + \alpha_2 + \alpha_3. \tag{6}$$

Различие или равенство главных коэффициентов линейного расширения α_1 , α_2 , α_3 зависит от симметрии кристалла. Для кристаллов кубической симметрии также как для изотропных тел:

$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha$$
; $\beta = 3\alpha$.

В некоторых типах кристаллов (например, в кристаллах с гексагональной решеткой): $\alpha_I = \alpha_2 = \alpha_{\perp} \neq \alpha 3 = \alpha_{||}$ и $\beta = 2\alpha_{\perp} + \alpha_{||}$.

В «чистом» виде анизотропию теплового расширения можно наблюдать только в монокристаллах. В поликристаллах же тела из-за всевозможной ориентации отдельных кристаллитов во разных направлениях будет наблюдаться некоторая средняя величина КТР, как в аморфных телах. Поэтому для поликристаллических тел практически всегда $\beta = 3\alpha$.

У некоторых твердых веществ (кварц, инвар — сплава никеля и железа, и др.) величина коэффициента расширения β довольно мала ($\sim 1 \cdot 10^{-6} \, \text{K}^{-1}$).

Коэффициенты теплового расширения жидкостей значительно больше, чем твердых тел: при комнатной температуре они имеют порядок $10^{-4} \div 10^{-1}$ K⁻¹. Для большинства тел $\beta > 0$, но существуют исключения, например, вода при нагреве от 0 до 4 °C при атмосферном давлении сжимается (т.е. в этом интервале температур $\beta < 0$) [56].

Приборы для измерения коэффициента теплового расширения жидкостей, газов и твёрдых тел называют дилатометрами.

Тепловое расширение тел имеет многочисленные практические приложения. Например, дилатометрический термометр — термометр, действие которого основано на тепловом расширении твердых тел.

Работа биметаллических, а также дилатометрических термометров основана на различии коэффициентов теплового расширения твердых тел, из которых выполнены чувствительные элементы. В биметаллических термометрах это пластина или спиральная лента, состоящая из двух слоев разнородных металлов; в дилатометрических — металлическая трубка и кварцевый или фарфоровый стержень. На принципе теплового расширения твердых тел основаны также датчики, использующие биметаллы.

Физические свойства и применение исследуемых металлов

Магний - элемент II группы периодической системы Д. И. Менделеева; порядковый номер 12; относительная атомная масса 24,312. Это легкий (плотность 1,74 г/см3) серебристо-белый металл с температурой плавления 651° С. На воздухе загорается при температуре 550° С и горит яркобелым пламенем. Если полоску магния внести во влажный хлор, то она воспламенится даже при обычной температуре. Горение магния сопровождается выделением большого количества теплоты (605 кДж/моль).

Практически неисчерпаем запас магния, хранимый в воде Мирового океана. Однако и Земля богата магнием - каждый пятидесятый атом земной коры - атом магния. [47]

Магний в виде чистого металла, а так же его химические соединения (бромид, перхлорат) применяются для производства очень мощных резервных электрических батарей.

Одним из важных эффектов магния является торможение процессов возбуждения в коре головного мозга и связанная с этим реализация наркотического, снотворного, седативного, аналитического и противосудорожного эффекта. Экспериментальными исследованиями доказана роль магния в качестве модулятора эффектов возбуждающих аминокислот в ЦНС. При дефиците магния снижается способность к концентрации внимания и функции памяти.

Благодаря большому химическому сродству к кислороду магний способен отнимать его у многих оксидов, также как и хлор у хлоридов. На этом свойстве магния основана магниетермия, открытая Бекетовым как способ получения других металлов вытеснением их магнием из соединений. Она приобрела большое значение для современной металлургии. В качестве примера можно указать, что магниетермия стала основным способом в производстве таких металлов, как бериллий и титан. С помощью

магниетермии были получены такие трудновосстанавливаемые металлы, как ванадий, хром, цирконий и другие.

Свойство металла гореть белым ослепительным пламенем широко используется в военной технике для изготовления осветительных и сигнальных ракет, трассирующих пуль и снарядов, зажигательных бомб. [58]

Цинк — элемент побочной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева. Порядковый номер 30; относительная атомная масса: 65,38 а. е. м. ± 0,002 а. е. м. Обозначается символом Zn (лат. Zincum). Простое вещество цинк (CAS-номер: 7440-66-6) при нормальных условиях — хрупкий переходный металл голубовато-белого цвета с температурой плавления 419,5°C (тускнеет на воздухе, покрываясь тонким слоем оксида цинка).

Чистый металлический цинк используется для восстановления благородных металлов, добываемых подземным выщелачиванием (золото, серебро). Кроме того, цинк используется для извлечения серебра, золота (и других металлов) из чернового свинца в виде интерметаллидов цинка с серебром и золотом (так называемой «серебристой пены»), обрабатываемых затем обычными методами аффинажа.

Применяется для защиты стали от коррозии (оцинковка поверхностей, не подверженных механическим воздействиям, или металлизация — для мостов, емкостей, металлоконструкций).

Цинк используется в качестве материала для отрицательного электрода в химических источниках тока, то есть в батарейках и аккумуляторах, например: марганцево-цинковый элемент, серебряно-цинковый аккумулятор.

Сульфид цинка используется при изготовлении люминофоров краткого послесвечения и других люминесцирующих составов, обычно это смеси ZnS и CdS, активированные ионами других металлов. Люминофоры на базе сульфидов цинка и кадмия также применяются в электронной

промышленности для изготовления светящихся гибких панелей и экранов в качестве электролюминофоров и составов с коротким временем высвечивания.

Теллурид, селенид, фосфид, сульфид цинка — широко применяемые полупроводники. Сульфид цинка — составная часть многих люминофоров. Фосфид цинка используется в качестве отравы для грызунов.

Селенид цинка используется для изготовления оптических стёкол с очень низким коэффициентом поглощения в среднем инфракрасном диапазоне, например, в углекислотных лазерах. [32]

Тита́н (химический символ — Ті; лат. Titanium) — элемент четвёртой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с порядковым номером 22. Относительная молярная масса: 47,867 а. е. м. Простое вещество титан — лёгкий прочный металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α -Ті с гексагональной плотноупакованной решёткой, β -Ті с кубической объёмно-центрированной упаковкой, температура полиморфного превращения $\alpha \leftrightarrow \beta$ 883 °C. Температура плавления 1660±20 °C. Титан имеет твёрдость по Бринеллю 175 МПа. [32]

Авиационная промышленность - основной потребитель титановой продукции. Именно развитие авиационной техники дало толчок титановому производству. По своим физико-механическим свойствам титановые сплавы являются универсальным конструкционным материалом.

Вплоть до конца 60-х годов XX века титан применялся главным образом для изготовления газовых турбин двигателей самолетов (титан очень прочный металл). В 70-х — 80-х годах титановые сплавы начали широко применяться для изготовления различных деталей планерной части самолетов (титан еще и легкий).

Титан помог человеку преодолеть звуковой барьер в авиации и выйти в космическое пространство. В ракетостроении и космической технике титан практически незаменим.

Примерно 25-30 лет назад из титана впервые сделали велосипед. И это было первое применение этого металла для изготовления спортивного инвентаря. Сейчас в конструкции велосипеда из титана может быть выполнен не только корпус, но и тормоза, звездочки и пружины сидений. [57]

ГЛАВА 2. Построение корреляционной модели и статистический анализ данных по термодинамическим свойствам металлов с гексагональной кристаллической структурой (на примере Mg, Zn, Ti)

Описание процесса построения корреляционной модели на примере магния

Для обработки данных применялись следующие статистические инструменты обработки данных [36, 55, 50]:

- построение эмпирических (первичных) температурных зависимостей теплоемкости и коэффициента теплового расширения объектов изучения;
- усреднение первичных значений теплоемкости и КТР с оценкой среднеквадратических отклонений (СКО);
- метод наименьших квадратов (МНК);
- построение сглаживающей линии тренда, обеспечивающей оптимальное (в смысле наименьшего СКО) описание эмпирических значений исследованных свойств;
- корреляционный анализ.

Поиск необходимой первичной информации осуществлялся в Сети с помощью информационно-поисковых систем, главным образом, Google. Сбор информации производился среди научных статей, публикаций, книг и журналов. Google — поисковая система, находящаяся на первом месте по популярности в мире, обрабатывающая более 40 миллиардов запросов в месяц [38]. Далее в программе MS Excel строились графики по теплоемкости и коэффициенту теплового расширения, со значениями разных авторов. Разные авторы получали разные значения коэффициента теплового расширения и удельной теплоемкости, поскольку на эти значения влияет множество различных факторов: приборы, показатели окружающей среды,

различие в образцах и др. Некоторые данные были представлены в первоисточниках сразу в готовых таблицах, а некоторые только на графике. Чтобы получить данные, которые приводили авторы на графике, использовалась специальная программа для оцифровки документов: Get Data Graph Digitizer. Данных много, но нам требуется построить один график, следовательно, для дальнейшей работы было необходимо усреднить все найденные данные по температуре, с возрастающим шагом в интервалах: (5 - 100 K) - шаг 5 K; (100 - 300 K) - 10 K; $(300 - T_{nz}) - 50 \text{ K}$.

На основе новых полученных данных (усредненных) был построен новый график — линия тренда. Для более точного результата необходимо было сгладить линию тренда, но сгладить так, чтобы новые данные не сильно отличались от экспериментальных данных, полученных различными учеными.

Построение корреляционной модели и статистический анализ данных по теплоемкости и термодинамическим свойствам Mg

Основным методом построения корреляционной зависимости является статистический корреляционный анализ данных различных авторов по температурным зависимостям теплоемкости и коэффициента теплового расширения твердого магния.

Температурная зависимость молярной теплоемкости магния C(T) представлена на рис. 1. Данные из работ [37, 43, 60, 31, 7, 1, 13] по теплоемкости Mg (всего 9 наборов данных, около 106 точек) хорошо согласуются между собой во всей области твердого состояния Mg. Сплошная (трендовая) линия на рис. 1 — результат статистического усреднения и сглаживания данных C(T) разных авторов. Из рис. 1 видно, что сглаженная температурная зависимость теплоемкости хорошо представляет эмпирические данные. Для удобства теплоемкость C(T) магния в твердом состоянии, наряду с объемным коэффициентом теплового расширения o(T) приведена также в таблице.

Сплошная (трендовая) линия на рис. 2 — результат статистического усреднения и сглаживания данных o(T) различных авторов. Как видно из рис. 2, сглаженная температурная зависимость ОКТР хорошо представляет эмпирические данные o(T) во всей области твердого состояния магния.

Температурная зависимость объемного коэффициента теплового расширения магния o(T) представлена на рис. 2. По данным из работ [37, 10, 19, 43, 49, 11, 60, 31] по ОКТР Mg (всего 12 наборов данных, 122 точки) имеются небольшие расхождения, но в целом данные удовлетворительно согласуются между собой во всей области твердого состояния металла, хотя в намного меньшей степени, чем данные по теплоемкости.

Таблица 1. Характеристика работ по исследованию теплового расширения Mg. Табличные данные представлены в приложении 2. [10, 60, 49, 43, 11, 37, 31, 19]

Ссылка	Метод исследования	Температурный диапазон, К	Характеристика образца, погрешность
Hidnert P., Sweeney W. T. [10], 1928	Точный компаратор, интерферометр, сплавленный кварц труба	373 – 773	Чистый магний
Чиркин В.С. [60], 1968	Информация отсутствует	450 – 900	Информация отсутствует
Новикова С.И. [49], 1974	Кваршевый дилатометр, Интерференционный, Рентгеновский	5 – 800	Чистота 99,99% Чистота 99,98%
Е. Н Казанцев[43],1975	Информация отсутствует	173 – 873	Информация отсутствует
KnowledgeDoor [11], 1980	Информация отсутствует	10 – 298,15	Информация отсутствует
Григорьев И. С., Мейлихов Е. З. [37], 1991	Информация отсутствует	5 – 800	Информация отсутствует
В.В. Бухмиров, Д.В. Ракутина, Ю.С. Солнышкова 31], 2009	Информация отсутствует	173 – 873	Информация отсутствует
Kaye&Laby [19], 2010	Информация отсутствует	100 - 1100	Информация отсутствует

В работе, продолжающей и развивающей идеи ранее опубликованных работ [28, 22, 21, 24, 2, 27, 25, 26, 23, 3, 4, 5, 29], изучена корреляционная зависимость объемного коэффициента теплового расширения (ОКТР) o(T) от теплоемкости C(T) магния во всей области твердого состояния вещества.

Таблица 2. Характеристика работ по исследованию теплоемкости Mg. Табличные данные представлены в приложении 1. [7, 60, 43, 37, 1, 12, 31]

Ссылка	Метод исследования	Температурный	Характеристика
ССЫЛКа	тегод исследования	диапазон, К	образца, погрешность
Corruccini R. J., Gniewek	Информация отсутствует	1 - 300	Информация
J. J. [7], 1960			отсутствует
Чиркин В.С. [60], 1968	Информация отсутствует	173 – 1173	Информация
			отсутствует
Е. Н Казанцев [43],1975	Информация отсутствует	273 - 873,	Информация
		924 – 1393	отсутствует
Григорьев И. С.,	Информация отсутствует	1 – 15	Информация
Мейлихов Е. З. [37],			отсутствует
1991			
Abu-eishah S. I., Haddad	Информация отсутствует	23,14 – 542,98	Погрешность измерений
Y., Solieman A., Bajbouj		273 – 692	1%
A. [1], 2004			
KnowledgeDoor [12],	Информация отсутствует	298,15	Информация
2008			отсутствует
В.В. Бухмиров, Д.В.	Информация отсутствует	273 – 873	Информация
Ракутина, Ю.С.			отсутствует
Солнышкова [31], 2009			

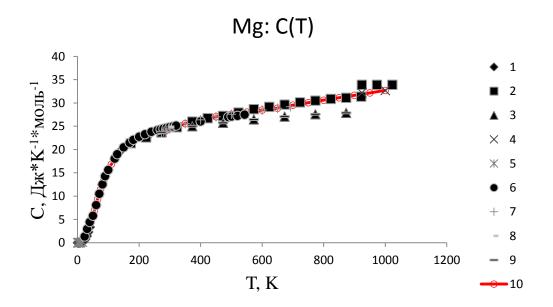


Рис. 1. Температурная зависимость теплоемкости C(T) магния в твердом состоянии. Символы — эмпирические данные 1 - [7], 2 - [60], 3, 4 - [43], 5 - [37], 6, 7 - [1], 8 - [12], 9 - [31], 10 (сплошная линия) — тренд.

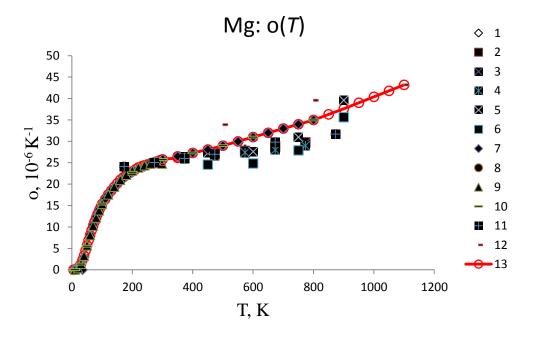


Рис. 2. Температурная зависимость объемного коэффициента теплового расширения o(T) магния в твердом состоянии. Символы — эмпирические данные 1, 2, 3, 4 - [10], 5, 6 - [60], 7 - [49], 8 - [43], 9 - [11], <math>10 - [37], 11 - [31], 12 - [19], 13 (сплошная линия) — тренд.

Точность приведенных данных на рис. 1, 2 и в табл. сглаживающих значений C(T) и o(T) (прил.7) может быть охарактеризована визуально — по степеням соответствия расчетных линий эмпирическим точкам, а также по величине среднеквадратических отклонений (СКО) термодинамических функции относительно трендовых значений. Добавим, что трендовые o(T), C(T)значения так же были получены путем нескольких последовательных итераций, качество которых контролировалось визуально и по величине СКО. Описание технических подробностей расчетов для краткости опускаем.

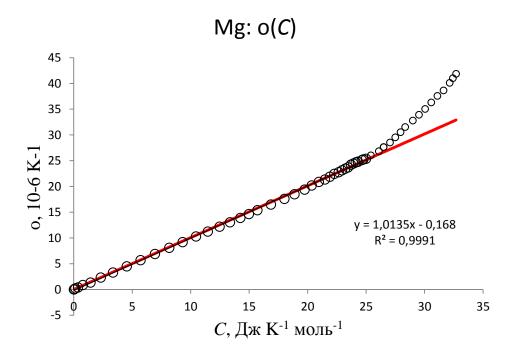
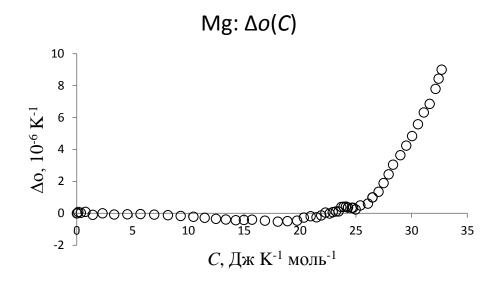



Рис. 3. Корреляционная зависимость o(C) для Mg.

Символы — усредненные и сглаженные значения ОКТР и молярной теплоемкости; прямая линия — линейная регрессия olin(C) для низкотемпературных значений o(C).

 $Puc. 4. To же, что puc. 3 для разности <math>\Delta o(C) = o(C) - o_{lin}(C)$ для Mg.

Корреляционная зависимость o(C), где усредненные и сглаженные значения ОКТР и молярной теплоемкости Mg берутся в соответствующих температурных точках, – представлена на рис. 3. Значения СКО для ОКТР и теплоемкости показаны на рис. 3 соответственно по оси абсцисс и осью ординат. Зависимость o(C) линейна с высоким уровнем корреляции (R^2 =

0,9991). Как хорошо видно из «разностной» диаграммы (рис. 4) точки o(C) выше C = 3R в целом хорошо ложатся на некоторую гладкую растущую линию, близкую к прямой.

 Γ и п о т е з а: Эмпирические данные $y_i(x_i)$ ($i=1,2,\ldots n$) соответствуют «би-линейной» теоретической модели (B-model) Y(X):

$$(1)Y(X) = \begin{cases} k_I \cdot X, \text{в области I: } X \leq X_I; \\ a \cdot X^2 + b \cdot X + c, \text{в области II: } X_I < X < X_{II}; \\ k_{II} \cdot X + d, \text{в области III: } X_{II} \leq X. \end{cases}$$

Условия гладкой «сшивки» на границах сопряжения областей I, II, III:

(2)На границе $X = X_I$:

$$Y_I(X_I) = Y_{II}(X_I);$$

$$Y_I'(X_I) = Y_{II}'(X_I);$$

На границе $X = X_{II}$:

$$Y_{\rm II}(X_{\rm II})=Y_{\rm III}(X_{\rm II});$$

$$Y_{\mathrm{II}}'(X_{\mathrm{II}}) = Y_{\mathrm{III}}'(X_{\mathrm{II}}).$$

Прим. 1. Говоря на «естественном» языке, теоретическая модель Y(X) (1) представляет собой 2 линейных участка (области I, III), гладко сопряженных квадратичной переходной областью II. Модельная прямая в области I проходит через ноль.

Формально модель сдержит 8 свободных параметров, а именно, $\{X_{\rm I}, X_{\rm II}, k_{\rm I}, a, b, c, k_{\rm II}, d\}$. Четыре условия сшивки (2) уменьшают количество свободных параметров до 4-х, например, $\{X_{\rm I}, X_{\rm II}, k_{\rm I}, k_{\rm II}\}$. Назовем их базовыми варьируемыми параметрами (BVP).

Остальные параметры выражаются после несложных преобразований через BVP путем реализации условий сшивки (2):

$$a = \frac{1}{2} \frac{k_{II} - k_{I}}{X_{II} - X_{I}};$$

$$b = \frac{k_{I}X_{II} - k_{II}X_{I}}{X_{II} - X_{I}};$$

$$c = \frac{1}{2} \frac{(k_{II} - k_{I}) \cdot X_{I}^{2}}{X_{II} - X_{I}};$$

$$d = -\frac{1}{2} (k_{II} - k_{I}) (X_{II} + X_{I}).$$

Применение модели. Определение BVP модели (1) осуществляется методом наименьших квадратов (least squares method, LSM). А именно, варьируя BVP $\{X_{\rm I},\ X_{\rm II},\ k_{\rm I},\ k_{\rm II}\}$ до достижения наименьшей величины остаточной суммы квадратов

(4)
$$\Phi(X_{I}, X_{II}, k_{I}, k_{II}) = \sum_{i=1}^{n} (y_{i}(x_{i}) - Y_{i}(x_{i}))^{2} \to \min.$$

Прим. 2. Приравнивая нулю частные производные $(\partial \Phi/\partial X_I)$, $(\partial \Phi/\partial X_{II})$, $(\partial \Phi/\partial X_{II})$, $(\partial \Phi/\partial k_{II})$, можно получить систему уравнений относительно BVP $\{X_{\rm I}, X_{\rm II}, k_{\rm I}, k_{\rm II}\}$, имеющую точное решение. Однако проще численно найти оптимальные значения $\{X_{\rm I}, X_{\rm II}, k_{\rm I}, k_{\rm II}\}_{\rm min}$, реализующие минимальную величину $\Phi(X_{\rm I}, X_{\rm II}, k_{\rm I}, k_{\rm II}) = \Phi_{\rm min}$. Например, это можно сделать с помощью процедуры «Поиск решения» в MS Excel.

Прим. 3. В целом качество описания «би-линейной» моделью (1) эмпирических данных контролируется визуально и по величине остаточной суммы квадратов Φ_{\min} . Качество описания линейных участков (области I, III) может быть дополнительно проконтролировано с использованием встроенных процедур MS Excel.

В данной работе: X — значения теплоемкости C(T), а за Y(X) — значения ОКТР o(C).

Для начала вся область была разбита на 3 участка, 2 из которых линейны (I и III) Применив метод наименьших квадратов были получены следующие результаты:

в области X ≤25,75

$K_{11} =$	76,392	$b_1 =$	1,008
$K_{1y}=$	76,992	$b_0 =$	-0,122
$K_{vv}=$	77,659	$r_B=$	0,999

Коэффициент детерминации $R^2 = 0.999$

$$Y_I(X) = 1,0078x - 0,1216$$

в области III: 27,5547 ≤ X:

$K_{11} =$	72,445	$b_1 =$	2,275
$K_{1y}=$	74,062	$b_0=$	-33,00
K _{yy} =	75,717	$r_B=$	0,997

Коэффициент детерминации $R^2 = 0.997$

$$Y_{III}(X) = 2,2751x - 33,006$$

Для области II и сшивки воспользуемся «Поиском решения» в MS Excel. Найдены:

$X_I = 25,750$	a = 0,498
$X_{II} = 27,554$	b = -24,708
$K_I = 1,006$	c = 332,363
$K_{II} = 2,239$	d = -31,919

$$CKO = 0.284$$

Полученная модель:

$$Y(x) = \begin{cases} Y_I(X) = 1,0078x - 0,1216; R^2 = 0,9992 \\ Y_{II}(X) = 0,498x^2 - 24,708x + 332,36; R^2 = 0,9963 \\ Y_{III}(X) = 2,2751x - 33,006; R^2 = 0,9973 \end{cases}$$

 $Y_I(X)$, в области І: X ≤ 25,75;

 $Y_{II}(X)$, в области II: 25,75 < X < 27,5547;

 $Y_{III}(X)$, в области III: $27,5547 \le X$.

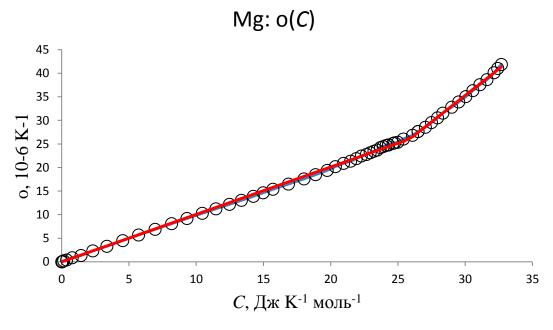


Рис. 5. Корреляционная зависимость o(C) для Mg. Символы — усредненные и сглаженные значения OKTP и молярной теплоемкости; сплошная линия — регрессионная модель, построенная методом наименьших квадратов.

Результаты: Показано, что четкая корреляция o(C) имеет место вплоть до точки плавления одноатомного Mg $T_{nn} = 923$ K. Значимое отклонение от низкотемпературного линейного поведения зависимости o(C) происходит по достижении теплоемкостью классического предела 3R Дюлонга и Пти.

Заметим, что среднеквадратическое отклонение довольно маленькое, а значит отклонение эмпирических данных от построенной модели незначительно

Требуется оценить надежность каждого полученного уравнения регрессии. Оценим статистическую значимость, полученной линейной модели с использованием F-критерия Фишера. Для этого была выдвинута нулевая гипотеза о том, что уравнение в целом статистически незначимо: H_0 : $R^2=0$ на уровне значимости α =0,05. Далее был найден коэффициент детерминации $R^2=\frac{k_{1y}^2}{k_{11}k_{yy}}=0,999$ и определено фактическое значение F-критерия: $F_{\text{набл}}=\frac{R^2}{1-R^2}\frac{(n-m-1)}{m}=44194,84$, где m=1 для парной регрессии. По таблице распределения Фишера находим $F_{\text{табл}}$:

$$F_{\text{табл}} = F_{1-\alpha}(m, n-m-1) = F_{0,95}(1,36) = 4,12.$$

Поскольку фактическое значение $F_{\text{набл}} > F_{\text{табл}}$, то нулевая гипотеза отклоняется и с вероятностью (0,95) принимается альтернативная гипотеза о статистической значимости уравнения в целом.

Точно также проверяем второе уравнение:

$$R^2 = 0.999$$
, $F_{\text{табл}} = 10.13$, $F_{\text{набл.}} = 117166,1$.

Поскольку фактическое значение $F_{\text{набл}} > F_{\text{табл}}$ то нулевая гипотеза снова отклоняется и с вероятностью (0,95) принимается альтернативная гипотеза о статистической значимости уравнения в целом.

Проверив последнее уравнение получаем:

$$R^2 = 0,997, \, F_{\text{табл.}} = 4,75, \, F_{\text{крит.}} = 4451,2.$$
 $F_{\text{набл.}} > F_{\text{табл.}}$

Проверив все уравнения регрессионной модели делаем вывод, что уравнение статистически значимо, на всей исследуемой области, вплоть до температуры плавления $T_{\rm пл}$.

Результаты. В области достижения теплоемкостью Mg классического предела Дюлонга и Пти $3R \approx 24,9 \; \text{Дж} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$ наблюдается близкое к излому, изменение характера зависимости o(C): при C > 3R.

Проведенный Корреляционный анализ на примере Mg свидетельствует, вопреки традиционным воззрениям [46, 41, 20], о вероятном существенном изменении механизма формирования температурных зависимостей ОКТР o(T) и/или теплоемкости C(T). Можно предположить, что потребуются изменения в традиционных моделях и интерпретациях уравнений состояния твердых тел. Отметим, что поведение диаграммы корреляционной зависимости, аналогичное представленному здесь для Mg, наблюдается и для других твердых тел.

Построение корреляционной модели и статистический анализ данных по теплоемкости и тепловому расширению цинка: Zn

Температурная зависимость молярной теплоемкости цинка C(T) представлена на рис. 6. Данные из работ [7, 43, 6, 37, 1, 13, 31] по теплоемкости Zn хорошо согласуются между собой во всей области твердого состояния Zn. Сплошная (трендовая линия) на рис. 6 — результат статистического усреднения и сглаживания данных C(T) разных авторов. Из рис. 6 видно, что сглаженная температурная зависимость теплоемкости хорошо представляет эмпирические данные (прил. 3).

Таблица 3. Характеристика работ по исследованию теплоемкости Zn. Табличные данные представлены в приложении 4. [7, 43, 6, 37, 1, 13, 31]

Ссылка	Метод исследования	Температурный диапазон, К	Характеристика образца, погрешность
Corruccini R. J., Gniewek J. J. [7], 1960	Информация отсутствует	1 – 300	Информация отсутствует
Е. Н Казанцев [43],1975	Информация отсутствует	692,5 – 1173 73 – 673	Информация отсутствует
Chase M.W., Davies C.A., Downey J,R, Frurip D.J., McDonald R.A., Syverud A.N. [6], 1978	Информация отсутствует	100 – 692	Информация отсутствует
Григорьев И. С., Мейлихов Е. З. [37], 1991	Информация отсутствует	20 – 1000, 1 – 15	Информация отсутствует
Abu-eishah S. I., Haddad Y., Solieman A., Bajbouj A. [1], 2004	Информация отсутствует	1,02 – 12, 85, 273 – 692	Погрешность измерений 1%
KnowledgeDoor [13], 2008	Информация отсутствует	298,15	Информация отсутствует
В.В. Бухмиров, Д.В. Ракутина, Ю.С. Солнышкова [31], 2009	Информация отсутствует	73 – 673	Информация отсутствует

Температурная зависимость коэффициента объемного теплового расширения цинка o(T) представлена на рис. 7. Данные из работ [49, 43, 15, 37, 31, 19] (прил. 4) по КОТР, в целом, находятся в разумном согласии между собой.

Таблица 4. Характеристика работ по исследованию теплового расширения Zn. Табличные данные представлены в приложении 5. [490, 43, 15, 37, 31, 19]

Ссылка	Метод исследования	Температурный диапазон, К	Характеристика образца, погрешность
Новикова С.И. [49], 1974	Кварцевый дилатометр, Интерференционный, Рентгеновский	5 – 273, 273 – 573, 573 – 650	Чистота 99,9975%, монокристалл, Спектрально чистый, Чистота 99,9%.
Е. Н Казанцев [43],1975	Информация отсутствует	73 – 673	Информация отсутствует
KnowledgeDoor [15], 1980	Информация отсутствует	10 – 298	Информация отсутствует
Григорьев И. С., Мейлихов Е. З. [37], 1991	Емкостной, Рентгеновский	5 – 283, 273 – 650	Чистота 99,99%, монокристалл, Чистота 99,9%
В.В. Бухмиров, Д.В. Ракутина, Ю.С. Солнышкова 31], 2009	Информация отсутствует	73 – 673	Информация отсутствует
Kaye&Laby [19], 2010	Информация отсутствует	100 – 500	Информация отсутствует

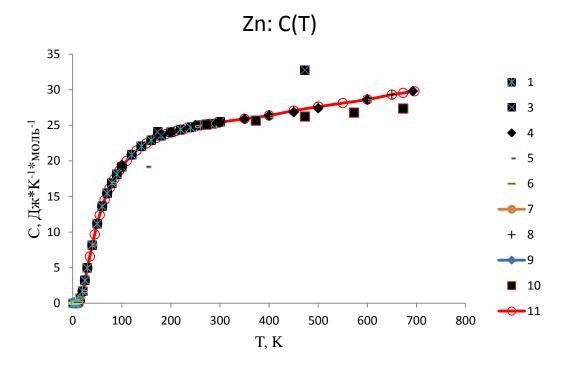


Рис. 6. Температурная зависимость теплоемкости C(T) цинка в твердом состоянии. Символы — эмпирические данные 1-[7], 2, 3-[43], 4-[6], 5, 6-[3760], 7, 8-[143], 9-[1311], 10-[31], 11 (сплошная линия) — тренд.

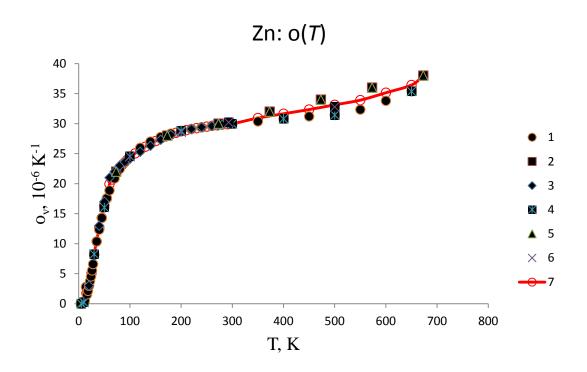


Рис. 7. Температурная зависимость объемного коэффициента теплового расширения o(T) цинка в твердом состоянии. Символы — эмпирические данные 1-[49], 2-[43], 3-[15], 4-[37], 5-[31], 6-[19], 7(сплошная линия) — тренд.

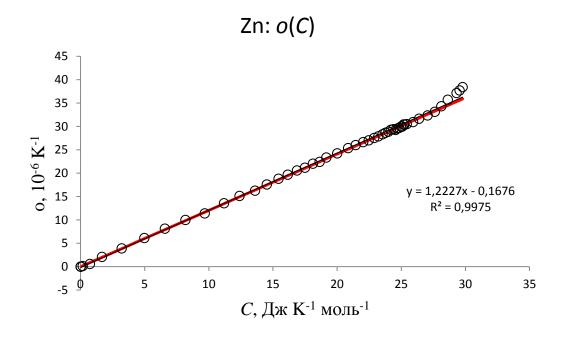
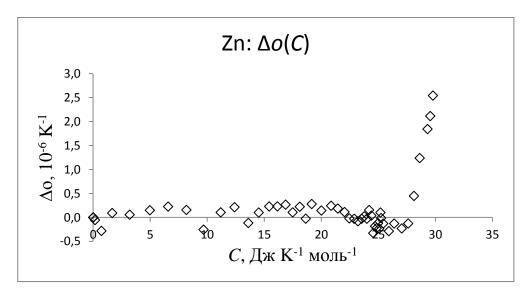



Рис. 8. Корреляционная зависимость o(C) для Zn.

Символы — усредненные и сглаженные значения ОКТР и молярной теплоемкости; прямая линия — линейная регрессия olin(C) для низкотемпературных значений o(C).

Puc. 9. То же, что рис. 3 для разности $\Delta o(C) = o(C) - o_{lin}(C)$ для Zn.

Зависимость o(C) линейна с высоким уровнем корреляции ($R^2 = 0,9975$). Как хорошо видно из «разностной» диаграммы (рис. 9) точки o(C) выше C = 3R в целом хорошо ложатся на некоторую гладкую растущую линию, близкую к прямой.

Методом наименьших квадратов были получены следующие результаты:

в области X ≤25,75:

K ₁₁ =	71,077	$b_1=$	1,202
$K_{1y}=$	85,463	$b_0=$	0,068
K _{yy} =	102,789	$r_B=$	0,999
	D 2	0.000	

$$R^2 = 0,999$$

$$Y_I(X) = 1,2024x + 0,0676;$$

в области III: 27,5547 ≤ X.

$K_{11} =$	75,095	$b_1=$	2,275
$K_{1y}=$	89,833	$b_0=$	-33,006
$K_{yy}=$	107,467	$r_B=$	0,997

$$R^2 = 0.997$$

$$Y_{III}(X) = 2,2751x - 33,006;$$

Воспользовавшись «Поиском решения» в MS Excel были получены следующие значения BVP:

$X_I = 27,554$	a = 0.498
$X_{II} = 25,750$	b = -24,708
$K_I = 1,203$	c = 332,363
$K_{II} = 1,958$	<i>d</i> = -20,3111

$$CKO = 0,225$$

и получена модель:

$$Y(x) = \begin{cases} Y_I(X) = 1,2024x + 0,0676; R^2 = 0,9992 \\ Y_{II}(X) = 0,498x^2 - 24,708x + 332,36; R^2 = 0,9963 \\ Y_{III}(X) = 2,2751x - 33,006; R^2 = 0,9973 \end{cases}$$

 $Y_I(X)$, в области І: $X \le 25,75$;

 $Y_{II}(X)$, в области II: 25,75 < X < 27,5547;

 $Y_{III}(X)$, в области III: $27,5547 \le X$.

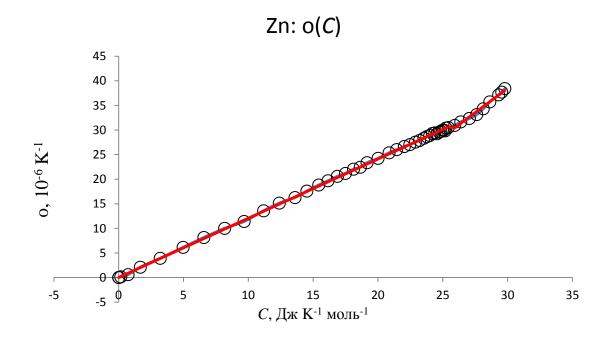


Рис. 10. Корреляционная зависимость o(C) для Zn. Символы — усредненные и сглаженные значения ОКТР и молярной теплоемкости; сплошная линия — регрессионная модель, построенная методом наименьших квадратов.

Результаты. В области достижения теплоемкостью Zn классического предела Дюлонга и Пти $3R \approx 24.9 \ \text{Дж} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$ наблюдается близкое к излому, изменение характера зависимости o(C): при C > 3R.

Оценим статистическую значимость, полученной линейной модели с использованием F-критерия Фишера. Для этого была выдвинута нулевая гипотеза о том, что уравнение в целом статистически незначимо: H_0 : $R^2 = 0$ на уровне значимости $\alpha = 0.05$.

Точно так же как и для магния исследуем все три области:

1) В области І: *X* ≤25,75;

$$R^2 = 0.999, F_{\text{табл}} = 4.12, F_{\text{набл.}} = 138194.9.$$

2) В области II: 25,75 < X < 27,5547;

$$R^2 = 0.999, F_{\text{табл.}} = 4.18, F_{\text{крит.}} = 86029,17.$$

3) В области III: $27,5547 \le X$.

$$R^2 = 0.994$$
, $F_{\text{табл.}} = 6.61$, $F_{\text{крит.}} = 874.93$.

Поскольку фактическое значение $F_{\text{набл}} > F_{\text{табл}}$ в каждом из уравнений регрессионной модели, то нулевая гипотеза отклоняется и с вероятностью (0,95) принимается альтернативная гипотеза о статистической значимости уравнения в целом.

Проверив все уравнения регрессионной модели делаем вывод, что уравнение статистически значимо, на всей исследуемой области, вплоть до температуры плавления $T_{\rm пл}$.

Построение корреляционной модели и статистический анализ данных по теплоемкости и тепловому расширению титана: Ti

Так, как титан существует в двух кристаллических модификациях, то корреляционный анализ проводился не до температуры плавления, как в

случае с остальными металлами, а до температуры полиморфного превращения, чтобы не отходить от темы выпускной квалификационной работы.

Температурная зависимость молярной теплоемкости титана C(T) представлена на рис. 11. Данные из работ [7, 60, 43, 6, 37, 1, 14, 31] по теплоемкости Ті хорошо согласуются между собой во всей области твердого состояния α -Ті. Сплошная (трендовая линия) на рис. 11 — результат статистического усреднения и сглаживания данных C(T) разных авторов. Из рис. 11 видно, что сглаженная температурная зависимость теплоемкости хорошо представляет эмпирические данные (прил. 5).

Таблица 5 Характеристика работ по исследованию теплоемкости Ті. Табличные данные представлены в приложении 7. [7, 60, 43, 6, 37, 1, 14, 31]

Ссылка	Метод исследования	Температурный диапазон, К	Характеристика образца, погрешность
Corruccini R. J.,	Информация отсутствует	10 – 260	Информация
Gniewek J. J. [7], 1960			отсутствует
Чиркин В.С. [60],	Информация отсутствует	100 – 1473	Информация
1968			отсутствует
Е. Н Казанцев	Информация отсутствует	273 – 1173	Информация
[43],1975			отсутствует
Chase M.W., Davies	Информация отсутствует	100 - 1100	Максимальное
C.A., Downey J,R,			отклонение всех
Frurip D.J., McDonald			исследований от
R.A., Syverud A.N.			принятого составляет
[6], 1979			2,5% в этом
			температурном
			диапазоне
Григорьев И. С.,	Информация отсутствует	20 - 1000,	Информация
Мейлихов Е. З. [37],		1 – 15	отсутствует
1991			
Abu-eishah S. I.,	Информация отсутствует	273 – 713,	Информация
Haddad Y., Solieman		184 - 1124,7	отсутствует
A., Bajbouj A. [1],			
2004			
KnowledgeDoor [14],	Информация отсутствует	298,15	Информация
2008			отсутствует
В.В. Бухмиров, Д.В.	Информация отсутствует	273 – 1173	Информация
Ракутина, Ю.С.			отсутствует
Солнышкова [31],			
2009			

Температурная зависимость коэффициента объемного теплового расширения титана o(T) представлена на рис. 12. Данные из работ [9, 60, 49, 43, 37, 31] (прил. 6) по КОТР, в целом, находятся в разумном согласии между собой.

Ссылка	Метод исследования	Температурный диапазон, К	Характеристика образца, погрешность
Hidnert P. [9], 1943	Информация отсутствует	193 – 973	Чистота 97,2%
Чиркин В.С. [60], 1968	Информация отсутствует	293	Информация отсутствует
Новикова С.И. [49], 1974	Емкостной, Компораторный	10 - 300, 300 - 1000	Чистота лучше 99,95%, Чистота 99,9%
Е. Н Казанцев [43],1975	Информация отсутствует	273 – 973	Информация отсутствует
Григорьев И. С., Мейлихов Е. З. [37], 1991	Информация отсутствует	10 – 1000	Информация отсутствует
В.В. Бухмиров, Д.В. Ракутина, Ю.С. Солнышкова [31], 2009	Информация отсутствует	273 – 973	Информация отсутствует

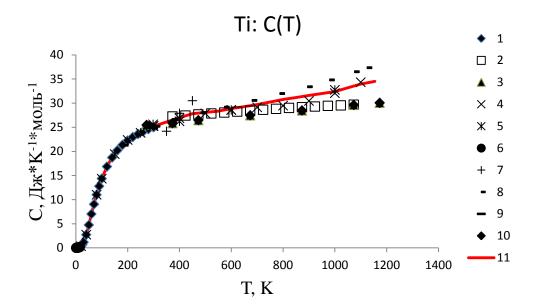


Рис. 11. Температурная зависимость теплоемкости C(T) титана в твердом состоянии. Символы — эмпирические данные 1-[7], 2-[60], 3-[43], 4-[6], 5, 6-[3760], 7, 8-[143], 9-[1411], 10-[31], 11 (сплошная линия) — тренд.

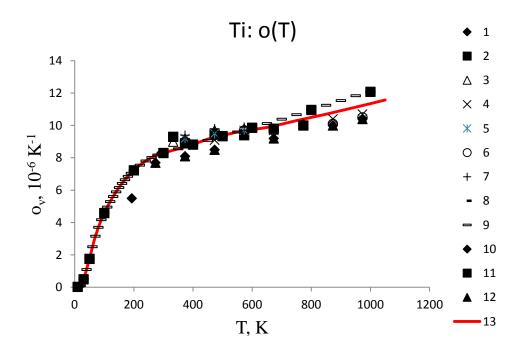


Рис. 12. Температурная зависимость объемного коэффициента теплового расширения o(T) титана в твердом состоянии. Символы — эмпирические данные 1, 2, 3, 4, 5, 6, 7 — [9], 8—[60], 9—[49], 10—[43], 11—[37], 12—[31], 13(сплошная линия) — тренд.

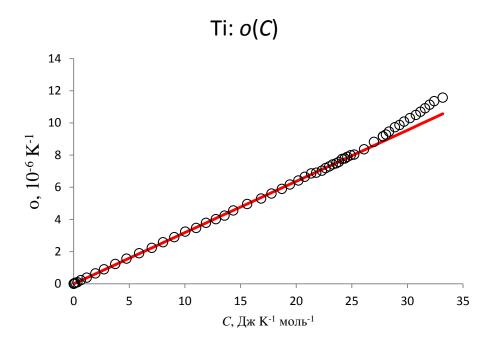
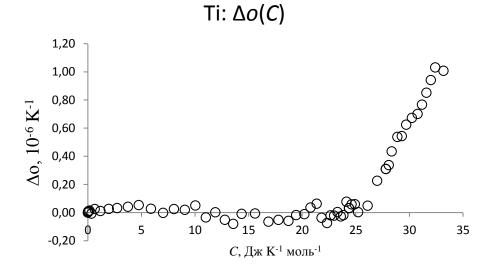



Рис. 13. Корреляционная зависимость o(C) для Ті.

Символы — усредненные и сглаженные значения ОКТР и молярной теплоемкости; прямая линия — линейная регрессия o(C) для низкотемпературных значений o(C).

Puc. 14. To же, что рис. 3 для разности $\Delta o(C) = o(C) - o_{lin}(C)$ для Ti.

Зависимость o(C) линейна с высоким уровнем корреляции ($R^2=0,999$). Как хорошо видно из «разностной» диаграммы (рис. 14) точки o(C) выше C=3R в целом хорошо ложатся на некоторую гладкую растущую линию, близкую к прямой.

Методом наименьших квадратов были получены:

в области І: X ≤25,75:

$K_{11} =$	75,964	$b_1 =$	0,317
$K_{1y}=$	24,089	$b_0 =$	0,015
$K_{yy}=$	7,640	$r_B =$	1,000
$R^2 = 0.999$			

$$Y_I(X) = 0.3171x + 0.0153;$$

• в области III: $27,5547 \le X$.

K ₁₁ =	75,095	$b_1=$	0,4541
$K_{1y}=$	89,833	$b_0=$	-3,4329
K _{yy} =	107,467	$r_B=$	0,997

$$R^2 = 0,997$$

$$Y_{III}(X) = 0,4541x - 3,4329;$$

Воспользовавшись «Поиском решения» в MS Excel были получены следующие значения BVP:

$X_I = 27,554$	a = 0,498
$X_{II} = 25,750$	b = -24,708
$K_I = 0.3183$	c = 332,363
$K_{II} = 0.458$	d = -3,563

CKO = 0.037

Полученная модель:

$$Y(x) = \begin{cases} Y_I(X) = 0.3171x + 0.0153; R^2 = 0.9992 \\ Y_{II}(X) = 0.498x^2 - 24.708x + 332.36; R^2 = 0.9966 \\ Y_{III}(X) = 0.4541x - 3.4329; R^2 = 0.9976 \end{cases}$$

 $Y_I(X)$, в области І: $X \le 25,75$;

 $Y_{II}(X)$, в области II: 25,75 < X < 27,5547;

 $Y_{III}(X)$, в области III: $27,5547 \le X$.

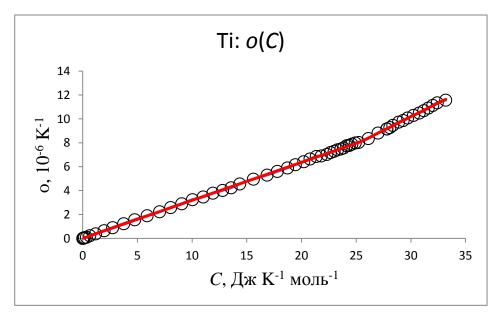


Рис. 15. Корреляционная зависимость о(С) для Ті Символы — усредненные и сглаженные значения ОКТР и молярной теплоемкости; сплошная линия — регрессионная модель, построенная методом наименьших квадратов.

Результаты. В области достижения теплоемкостью Ті классического предела Дюлонга и Пти $3R \approx 24,9 \; \text{Дж} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$ наблюдается близкое к излому, изменение характера зависимости о(*C*): при *C* > 3*R*.

Оценим статистическую значимость, полученной линейной модели с использованием F-критерия Фишера. Для этого была выдвинута нулевая гипотеза о том, что уравнение в целом статистически незначимо: H_0 : $R^2 = 0$ на уровне значимости $\alpha = 0.05$.

Точно так же как и для магния и цинка исследуем все три области:

1) В области І: *X* ≤25,75;

$$R^2 = 0.999, F_{\text{табл}} = 4.12, F_{\text{набл.}} = 211922.3.$$

2) В области II: 25,75 < X < 27,5547;

$$R^2 = 0.996, F_{\text{табл.}} = 4.18, F_{\text{крит.}} = 31962.9.$$

3) В области III: $27,5547 \le X$.

4)
$$R^2 = 0.997$$
, $F_{\text{Ta6IL}} = 4.84$, $F_{\text{KDUT}} = 4563.52$.

Поскольку фактическое значение $F_{\text{набл}} > F_{\text{табл}}$ в каждом из уравнений регрессионной модели, то нулевая гипотеза отклоняется и с вероятностью (0,95) принимается альтернативная гипотеза о статистической значимости уравнения в целом.

Проверив все уравнения регрессионной модели делаем вывод, что уравнение статистически значимо, на всей исследуемой области, вплоть до температуры полиморфного превращения.

Таким образом, для всех трех рассмотренных веществ (Mg, Zn, Ti) наблюдается схожее корреляционное поведение o(C) вплоть до их точек плавления, подтверждая, тем самым, общность их природы и свойств.

Заключение

В ходе написания данной выпускной квалификационной работы были выполнены поставленные задачи:

- Освоены математические инструменты для обработки и анализа статистических данных.
- Освоены компьютерные средства для поиска, обработки, анализа и интерпретации статистических данных (пакеты MS Word, MS Excel).
- Освоена математическая модель исследуемого явления, порождающего статистические данные для анализа (термодинамическая модель формирования теплоемкости и коэффициента теплового расширения твердого тела).
- Построена «би-линейная» модель
- Найдены и предварительно проанализированы первичные данные исследований (температурные зависимости теплоемкости и коэффициента теплового расширения Mg, Zn, Ti). Зафиксированы результаты поиска в файлах MS Word и MS Excel. Созданы коллекции первичных данных.
- Проведен углубленный статистический анализ первичных данных (построены усредняющий тренд, сглаживание, корреляционный анализ).
- Сформулированы содержательные выводы по результатам обработки и анализа данных.

В теоретической части (Глава I) были описаны методы статистической обработки информации, даны понятия теплоемкости и объемного коэффициента теплового расширения твердых тел, а так же описаны основные физические свойства и применение исследуемых металлов. В практической части (Глава II) были проведен анализ исследуемого явления и проверено предположение о том, что наблюдаемое характерное поведение корреляционной зависимости теплоемкости от коэффициента теплового

расширения присуще металлам, имеющим гексагональную кристаллическую структуру. Была построена регрессионная модель методом наименьших квадратов и при помощи F-статистики проверено соответствие построенной модели эмпирическим значениям.

Гипотеза исследования на примере металлов с гексагональной кристаллической структурой подтверждена: между изученными термодинамическими свойствами (теплоемкость, КТР) каждого представителя семейства, прослеживается вполне четкая линейная, точнее, «би-линейная» связь с изломом вверх, соответствующим достижению теплоемкостью классического предела Дюлонга и Пти.

проблемы Для решения формирования навыков научноисследовательской и аналитической работы у студентов и соответствующих профессиональных компетенций, связанных с поиском, обработкой, анализом и интерпретацией данных, выбрано В значительной мере уникальное научное направление, связанное со статистической обработкой и анализом данных по ключевым корреляционным термодинамическим свойствам твердых тел. Систематическое формирование этих компетенций в рамках реалий существующего в ИМИиИТ УрГПУ учебного процесса является непростой, но решаемой задачей.

Библиографический список

- 1. Abu-eishah S. I., Haddad Y., Solieman A., Bajbouj A. A new correlation for the specific heat of metals, metal oxides and metal fluorides as a function of temperature // Latin American Applied Research. 2004. №34. C. 257-265.
- 2. Bodryakov V. Yu. On Correlation between Heat Capacity and Thermal Expansivity of Cubic Pt-Metals (Following to the John Arblaster's Evaluations) // Open Sci. J. Mod. Phys. 2015. V. 2. N. 1. P. 10-13.
- 3. Bodryakov V. Yu. Specific Heat and Thermal Expansion of Refractory Nonmetal: CaO // Open Sci. J. Mod. Phys. 2015. V. 2. N. 4. P. 50–54.
- 4. Bodryakov V. Yu. Thermodynamic Properties of Tantalum through the Whole Range of Solid State: Correlation Analysis and Self-Consistent Interpretation. Chapter 2 in the Book: R.M. Sultanov, U.M. Dzhemilev, V.Yu. Bodryakov, B.A. Greenberg, M.A. Ivanov, A.M. Patselov, A.V. Inozemtsev, M.S. Pushkin, S.V. Kuzmin, V.I. Lysak. "Tantalum: Geochemistry, Production and Potential Applications" / Ed. Harry Reyes. Hauppauge (NY, USA): Nova Science Publishers, Inc., 2015. 189 p.
- 5. Bodryakov V.Yu. Elastic Moduli and Related Thermodynamic Properties of Cryocrystalline Argon // Open Science Journal of Modern Physics. 2015. V. 2. Issue 6. P. 111-121.
- 6. Chase M.W., Davies C.A., Downey J,R, Frurip D.J., McDonald R.A., Syverud A.N. JANAF Thermochemical Tables Third Edition // Thermal Group, 1707 Building, Dow Chemial U.S.A., Midland, Michigan 48674, U.S.A.. 1985. Vol. 13.
- 7. Corruccini R. J., Gniewek J. J. Specific Heats and Enthalpies of Technical Solids at Low Temperatures. Washington: National Bureau of Standards Monograph, 1960. 20 c.

- 8. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd Edition. Berlin-Heidelberg: Springer-Verlag, 2009. 763 p. 25.
- 9. Hidnert P. THERMAL EXPANSION OF TITANIUM // Jotlrnal of Research of the National Bureau of Standards. 1943. Vol. 30.
- 10. Hidnert P., Sweeney W. T. THERMAL EXPANSION OF MAGNESIUM AND SOME OF ITS ALLOYS // Bureau of Standards Journal of Research. Vol. 1.
- 11. KnowledgeDoor URL: http://www.knowledgedoor.com/2/elements_handbook/linear_thermal_expansi on_coefficient_part_2.html#magnesium (дата обращения: 21.03.2017).
- 12. KnowledgeDoor URL: http://www.knowledgedoor.com/2/elements_handbook/isobaric_molar_heat_capac http://www.knowledgedoor.com/2/elements_handbook/isobaric_molar_heat_capac http://www.knowledgedoor.com/2/elements_handbook/isobaric_molar_heat_capac http://www.knowledgedoor.com/2/elements_handbook/isobaric_molar_heat_capac http://www.knowledgedoor.com/2/elements_handbook/isobaric_molar_heat_capac http://www.knowledgedoor.com/2/elements <a href="http:/
- 13. KnowledgeDoor URL: http://www.knowledgedoor.com/2/elements_handbook/isobaric_molar_heat_ca расіty.html#Zinc (дата обращения: 24.03.2017).
- 14. KnowledgeDoor URL: http://www.knowledgedoor.com/2/elements_handbook/isobaric_molar_heat_ca pacity.html#Titanium (дата обращения: 24.03.2017).
- 15. KnowledgeDoor URL: http://www.knowledgedoor.com/2/elements_handbook/linear_thermal_expansi on coefficient part 3.html#Zinc (дата обращения: 24.03.2017).
- 16. KnowledgeDoor
 URL:

 http://www.knowledgedoor.com/2/elements_handbook/linear_thermal_expansi

 on_coefficient_part_3.html#Titanium (дата обращения: 24.03.2017).
- 17. MacKay D. J. C. Information Theory, Inference and Learning Algorithms. Cambridge (UK): Cambridge University Press, 2003. 628 p. 26.

- 18. Peng R. D. and Matsui E. The Art of Data Science. A Guide for Anyone Who Works with Data. Skybrude Consulting, LLC, 2015. 162 p. URL: https://leanpub.com/artofdatascience.
- 19. Thermal expansion // Kaye&Laby URL: http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_5.html (дата обращения: 15.04.2017).
- 20. Ашкрофт Н., Мермин Н. Физика твердого тела. 2-е изд. М.: Мир, 1979. Т.1. 458 с.
- 21. Бодряков В. Ю. О корреляции температурных зависимостей теплового расширения и теплоемкости вплоть до точки плавления тугоплавкого металла: молибден // Теплофизика высоких температур. 2014. Т.52. № 6. С.863–869.
- 22. Бодряков В. Ю., Быков А. А. Особенность корреляционной зависимости объемного коэффициента теплового расширения свинца от его теплоемкости // Электронное научное издание «Актуальные инновационные исследования: наука и практика». 2014. №2. 9 с.
- 23. Бодряков В.Ю. Корреляция коэффициента теплового расширения и теплоемкости криокристалла инертного газа: криптон // ЖТФ. 2015. Т. 85. Вып. 3. С. 65–68.
- 24. Бодряков В.Ю. О корреляции коэффициента теплового расширения и теплоемкости криокристалла аргона // ФТТ.2014. Т.56. Вып.11. С. 2279–2285.
- 25. Бодряков В.Ю. О корреляции коэффициента теплового расширения и теплоемкости криокристалла инертного газа ксенона // Неорган. Матер. 2015. Т.51. №2. С.213-217.
- 26. Бодряков В.Ю. О корреляции температурных зависимостей теплового расширения и теплоемкости вплоть до точки плавления тугоплавкого металла: Вольфрам // ТВТ.2015. Т.53. №5. С.676–682.

- 27. Бодряков В.Ю., Быков А.А. Корреляционные характеристики температурного коэффициента объемного расширения и теплоемкости корунда // Стекло и Керамика. 2015. №2. С.30-33.
- 28. Бодряков В.Ю., Быков А.А. Особенность корреляционной зависимости объемного коэффициента теплового расширения алюминия от его теплоемкости // Электронное научное издание «Актуальные инновационные исследования: наука и практика». 2014.№1.9с.
- 29. Бодряков В.Ю., Карпова Е.В. Применение корреляционного анализа для взаимосогласованной оценки коэффициента теплового расширения и теплоемкости огнеупорной керамики: MgO // Огнеупоры и Техническая Керамика. 2015. №10. С. 18–21.
- 30. Бородич С. А.. Эконометрика: Учеб. побие. Минск: Новое издание 2001.
- 31. Бухмиров В. В., Ракутина Д. В., Солнышкова Ю. С. Справочные материалы для решения задач по курсу «тепломассообмен». Иваново: 2009.
- 32. Википедия // Википедия свободная энциклопедия URL: https://ru.wikipedia.org
- 33. Галашев В.А. Системы поиска и обработки информации: Учеб. метод. пособие. Ижевск: Удм. гос. ун-т., 2011. 149 с.
- 34. Гармаш А. В. Статистика в аналитической химии. Лекция 12. Корреляционный анализ. Коэффициент корреляции. М.: МГУ, 2013. URL: http://chemstat.com.ru/node/12
- 35. Глушко В. П. Термодинамические свойства индивидуальных веществ, под ред., 3 изд., т. 1-4, М.: Наука, 1978 1982.
- 36. Гмурман В. Е. Теория вероятностей и математическая статистика. Учеб. пособие для вузов. Изд. 12-ое – М.: Высш. обр., 2006. – 479с.
- 37. Григорьев И. С., Мейлихов Е. 3. Физические величины. Справочник. М.: Энергоатомиздат, 1991. 1232 с.
- 38. Гусев В. С. Google: Эффективный поиск. Краткое руководство. М.: Издательский дом «Вильямс», 2006. 240 с.

- 39. Джейсон Хайнер. Самая большая проблема больших данных их слишком трудно загружать // PCWeek/RE №7 (906) 19 апреля 2016. URL: http://www.pcweek.ru/idea/article/detail.php?ID=184747
 - 40. Доугерти К.. Введение в эконометрику. М.: ИНФРА-М 2001.
- 41. Займан Дж. Принципы теории твердого тела. 2-е изд. М.: Мир, 1974. 472 с.
- 42. Исаев Е. А., Корнилов В. В. Проблема обработки и хранения больших объемов научных данных и подходы к ее решению // Математическая биология и биоинформатика. 2013. Т. 8. № 1. С. 49-65.
- 43. Казанцев Е. Н. Промышленные печи. 2 изд. Москва: Металлургия, 1975.
- 44. Кремер Н. Ш.. Теория вероятностей и математическая статистика. Учебник для вузов. М.: ЮНИТИ-ДАНА, 2000.
- 45. Кремер Н.Ш., Путко Б.А.. Эконометрика: Учебник для вузов / Под ред. проф. Н. Ш. Кремера. М.: ЮНИТИ-ДАНА, 2003.
- 46. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика статистическая физика, 3-е изд. М.: Наука, 1976. Ч. 1. 584 с.
- 47. Магний // Магний, общая информация о металле URL: http://all-met.narod.ru/mg.html
- 48. Н. С. Зефиров, Н. Н. Кулов и др. Химическая энциклопедия. М.: Большая российская энциклопедия, 1995. Т. 4. 641 с.
- 49. Новикова С.И. Тепловое расширение твердых тел. М.: Издательство "наука", 1974. 293 с.
- 50. Орлов А. И. Прикладная статистика // Орлов А. И. Москва: Интернет-Университет Информационных Технологий, 2009. 846 с. URL: http://biblioclub.ru/index.php?page=book&id=234537
- 51. Панов М.Ю., Белоусов В. П., в сб.: Химия и термодинамика растворов, вып. 5, Л.: ЛГУ, 1982. с. 56-87.

- 52. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей: Справочное пособие / Пер. с англ. под ред. Б. И. Соколова. 3-е изд., перераб. и доп. Л.: Химия, 1982. 592 с.
- 53. Селезнев К. Проблемы анализа Больших Данных // Открытые системы. 2012. № 7. URL: http://www.osp.ru/os/2012/07/13017638/
- 54. Скользящее усреднение URL: http://www.polybook.ru/comma/1.7.2.pdf
- 55. Статистика: учеб.для студентов вузов по спец. "Статистика" // Под. ред. И.И. Елисеевой. М.: ТК Велби: Проспект, 2008. 448 с.
- 56. Сухова Т. А., Суркаев А. Л. Определение коэффициента линейного теплового расширения твердых тел. Методические указания. Волгоград: ВГТУ, 2012. 11 с.
- 57. Сферы применения титана // URL: http://titanchik.ru/about/42-sfery-primeneniya-titana.html
- 58. Федеральный портал protown.ru // Применение магния URL: http://protown.ru/information/hide/5577.html
- 59. Фёрстер Э., Рёнц Б. Методы корреляционного и регрессионного анализа. Руководство для экономистов. Перевод с немецкого и предисловие В. М. Ивановой, М.: Финансы и статистика, 1983. 304с.
- 60. Чиркин В.С. Теплофизические свойства материалов ядерной физики. Справочное изд. М.: Атомиздат, 1968. 484 с.
- 61. Чупров А.А. Основные проблем теории корреляции. О статистическом исследовании связи между явлениями. М.: Госстатиздат, 1960. 176 с.
- 62. Шульц М. М., Филиппов В. К. // Ж. Весе. химический об-ва им. Д.И. Менделеева. 1982. Т. 27. С. 485-494.

Приложение 1

Первичные данные по теплоемкости Мg

[1-П1] Corruccini R. J., Gniewek J. J. 1960.

	<i>C</i> , Дж K ⁻¹		<i>C</i> , Дж K ⁻¹		<i>C</i> , Дж K ⁻¹
T,K	моль -1	T,K	моль -1	T,K	моль ⁻¹
1	0,001337	30	1,434113	140	19,73728
2	0,002844	35	2,309165	160	20,95263
3	0,004618	40	3,354366	180	21,90061
4	0,007049	50	5,712145	200	22,65412
6	0,014341	60	8,167152	220	23,21319
8	0,026252	70	10,45201	240	23,69933
10	0,046183	80	12,46949	260	24,11254
15	0,140981	90	14,2439	280	24,47715
20	0,364605	100	15,70232	300	24,81745
25	0,777824	120	18,01149		

[2-П1] Чиркин В.С. 1968.

	<i>С</i> , Дж К ⁻¹		<i>C</i> , Дж K ⁻¹
T, K	моль -1	T, K	моль -1
173	21,36585	723	30,14068
223	22,60551	773	30,50529
273	23,69933	823	30,86989
323	24,79314	873	31,11296
373	26,00849	922	31,35603
423	26,7377	924	33,90827
473	27,22384	973	33,90827
523	27,95305	1023	33,90827
573	28,68226	1073	33,90827
623	29,1684	1123	33,90827
673	29,65454	1173	33,908265

[3-П1] Казанцев Е. Н. 1975.

	<i>С</i> , Дж К ⁻¹		<i>С</i> , Дж К ⁻¹
T, K	моль -1	T, K	моль -1
273	23,72363	673	27,078
373	25,0119	773	27,58845
473	25,74111	873	27,88013
573	26,47032		

[4-П1] Казанцев Е. Н. 1975.

m . r.		<i>C</i> , Дж K ⁻¹
T, K		моль -1
	924	32,20678
	1000	32,69292
	1200	33,78673
_	1300	34,27287
	1393	34,75901

[5-П1] Григорьев И. С., Мейлихов Е. 3. 1991.

Т, К		<i>C</i> , Дж К ⁻ моль ⁻¹	T, K	<i>С</i> , Дж К⁻ моль -1
	1	0,001337	5	0,010695
	2	0,002844	8	0,026252
	3	0,004618	10	0,046183
	4	0,007049	15	0,140981

[6-П1] Abu-eishah S. I., Haddad Y., Solieman A., Bajbouj A. 2004.

	<i>C</i> , Дж K ⁻¹		<i>C</i> , Дж K ⁻¹		<i>C</i> , Дж K ⁻¹
T, K	моль -1	T, K	моль -1	T, K	моль ⁻¹
23,1418	1,34299	129,008	19,001	289,678	24,6796
31,4253	2,96099	149,933	20,4796	299,489	24,8263
39,7203	4,44391	169,262	21,4786	310,002	24,9729
50,1317	5,79107	181,372	22,0899	320,278	25,1494
60,4633	8,08371	200,261	22,7587	399,958	26,053
70,7836	10,5115	219,161	23,2927	489,693	26,9832
81,1381	12,534	240,166	23,8258	500,441	27,1146
89,4102	14,287	259,781	24,1943	519,843	27,2431
99,8216	15,6341	269,825	24,356	542,976	27,5054
120,667	18,0583	279,167	24,518		

[7- Π 1] Abu-eishah S. I., Haddad Y., Solieman A., Bajbouj A. 2004.

	<i>С</i> , Дж K ⁻¹		<i>C</i> , Дж K ⁻¹
T, K	моль -1	T, K	моль -1
273	23,6537	450	27,0441
280	23,8806	500	27,5885
290	24,1815	600	28,4916
300	24,4583	650	28,8864
350	25,5727	692	29,1992
400	26,3937		

 $[8-\Pi 1]$ KnowledgeDoor. 2008.

T, K		<i>C</i> , Дж K ⁻¹ моль ⁻¹
	298,15	24,87

[9-П1] Бухмиров В. В., Ракутина Д. В., Солнышкова Ю. С. 2009.

T, K	<i>С</i> , Дж К ⁻ моль ⁻¹	T, K	<i>С</i> , Дж К ⁻ моль ⁻¹
273	23,7236	673	27,078
373	25,0119	773	27,5884
473	25,7411	873	27,8801
573	26,4703		

Приложение 2

Первичные данные по коэффициенту теплового расширения Mg [1-П2] Hidnert P., Sweeney W. T. 1928

T, K	o, 10 ⁻⁶ K ⁻¹
373	26,1
473	27
573	28,1

 $[2-\Pi 2]$ Hidnert P., Sweeney W. T. 1928.

<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
473	27,2
573	27,8
673	28,8
773	29,8

[3-Π2] Hidnert P., Sweeney W. T. 1928.

T, K	o, 10 ⁻⁶ K ⁻¹
373	26,4
473	26,7
573	27,5
673	28,6
773	29,6

 $[4-\Pi 2]$ Hidnert P., Sweeney W. T. 1928.

<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
373	26,3
473	26,7
573	27,4
673	28
773	29

[5-П2] Чиркин В.С. 1968.

T, K	o, 10 ⁻⁶ K ⁻¹
450	27,3
600	27,6
750	31
900	39,6

[6-П2] Чиркин В.С. 1968.

T, K	o, 10 ⁻⁶ K ⁻¹
450	24,57
600	24,84
750	27,9
900	35,64

[7-П2] Новикова С.И. 1974.

<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
5	0,00967	26	0,83667	120	17,6	280	25,4
6	0,014	28	1,07667	130	18,5333	300	25,8
7	0,14433	30	1,35	140	19,3333	350	26,5
8	0,02467	35	0	150	20,0333	400	27,3
10	0,04333	40	3,06667	160	20,7333	450	28,1
12	0,07	50	5,53	170	21,3333	500	29
14	0,10667	60	8,18	180	21,8667	550	30
16	0,16333	70	10,5	190	22,3667	600	31
18	0,24	80	12,4333	200	22,8	650	32
20	0,34333	90	14,0667	220	23,6667	700	33
22	0,47333	100	15,3667	240	24,1	750	34
24	0,63333	110	16,5333	260	24,9667	800	35

[8-П2] Казанцев Е. Н. 1975.

<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
173	24,12	473	27
273	25,07	673	29,83
373	26	873	31,71

 $[9-\Pi 2]$ KnowledgeDoor. 1980.

T, K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
10	0,05	90	13,9	240	24,4
20	0,4	100	15,4	260	24,8
30	1,4	120	17,6	273	25,1
40	3,3	140	19,4	280	25,2
50	5,7	160	21	293	25,4
60	8,1	180	22,2	298,15	24,8
70	10,3	200	23,2		
80	12,2	220	23,9		

[10-П2] Григорьев И. С., Мейлихов Е. З. 1991.

T, K	o, 10 ⁻⁶ K	<i>T</i> , K	o, 10 ⁻⁶ K
5	0,00983	300	25,8
10	0,04333	400	27,3
30	1,35	500	29
50	5,53	600	31
100	15,3667	800	35
200	22,8		

[11-П2] Бухмиров В. В., Ракутина Д. В., Солнышкова Ю. С. 2009.

T, K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
173	24,12	473	27
273	25,07	673	29,83
373	26	873	31,71

[12-Π2] Kaye&Laby. 2010

T, K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
293	24,6	800	39,6
500	33,9	1100	43,2

Приложение 3

Первичные данные по теплоемкости Zn

[1-П3] Corruccini R. J., Gniewek J. J. 1960.

T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹	T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹	T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹	T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹
1	0,00072	15	0,71918	70	15,4297	180	23,5368
2	0,00183	20	1,69988	80	16,868	200	23,9945
3	0,00379	25	3,20362	90	18,1103	220	24,3867
4	0,00719	30	4,96888	100	19,1563	240	24,7136
6	0,01896	40	8,1725	120	20,8562	260	24,9752
8	0,06276	50	11,18	140	22,0331	280	25,2367
10	0,16345	60	13,599	160	22,883	300	25,4982

[2-П3] Казанцев Е. Н. 1975.

T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹	T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹
692,5	32,7554	1073	29,421
873	32,0362	1173	28,5711

[3-П3] Казанцев Е. Н. 1975.

T,K		<i>C</i> , Дж K ⁻¹ моль ⁻¹	T,K	<i>С</i> , Дж К ⁻¹ моль ⁻¹
	73	22,4253	473	32,7619
	173	24,0598	573	26,7731
	273	25,0994	673	27,3485
	373	25,6486		

[4-Π3] Chase M.W., Davies C.A., Downey J,R, Frurip D.J., McDonald R.A., Syverud A.N. 1985.

T,K		<i>С</i> , Дж К ⁻ моль ⁻¹	T,K	<i>С</i> , Дж К ⁻ моль ⁻¹
	100	19,455	400	26,346
	200	24,05	450	26,843
	250	25,039	500	27,386
	298	25,387	600	28,588
	300	25,406	692,73	29,802
	350	25,889		

[5-П3] Григорьев И. С., Мейлихов Е. 3. 1991.

T,K		<i>C</i> , Дж K ⁻¹ моль ⁻¹	T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹
	20	1,6345	250	24,8444
	40	8,1725	400	26,2828
	80	16,868	600	28,5057
	150	19,1563	1000	31,3824

[6-П3] Григорьев И. С., Мейлихов Е. З. 1991.

Γ, K $C, Дж K^{-1}$ моль $^{-1}$		T,K	<i>С</i> , Дж К ⁻¹ моль ⁻¹
1	0,00065	5	0,01249
2	0,00177	8	0,06276
3	0,03596	10	0,1543
4	0,00686	15	0,73226

[7-Π3] Abu-eishah S. I., Haddad Y., Solieman A., Bajbouj A. 2004.

T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹	T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹	T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹
1,02039	3,1E-11	1,49092	8,6E-09	4,19183	4,2E-07
1,10579	7E-11	1,61447	3,3E-08	6,04806	4,9E-07
1,17327	2,7E-10	1,85917	9,6E-08	8,9076	4,9E-07
1,27098	7,8E-10	2,32322	2,5E-07	12,8545	4,9E-07
1,37656	2,6E-09	2,96567	3,2E-07		

[8-П3] Abu-eishah S. I., Haddad Y., Solieman A., Bajbouj A. 2004.

T,K		<i>C</i> , Дж К ⁻¹ моль ⁻¹	T,K	<i>C</i> , Дж К ⁻¹ моль ⁻¹
	273	25,05	450	27,0496
	280	25,1291	500	27,6144
	290	25,2421	600	28,7441
	300	25,355	650	29,3089
	350	25,9199	692	29,7834
	400	26,4847		

$[9-\Pi 3]$ KnowledgeDoor. 2008..

T,K		C , Дж K^{-1} моль $^{-1}$	
298	3,15	25,39	

[10-П3] Бухмиров В. В., Ракутина Д. В., Солнышкова Ю. С. 2009.

T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹	T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹
73	22,4253	473	26,2239
173	24,0598	573	26,7731
273	25,0994	673	27,3485
373	25,6486		

Приложение 4

Первичные данные по коэффициенту теплового расширения Zn [1-П4] Новикова С.И. 1974.

T, K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
4	0,008	30	8,26667	200	28,8
5	0,016	35	10,3667	220	29,1
6	0,024	40	12,3333	240	29,3667
7	0,042	45	14,3	260	29,6333
8	0,07533	50	16,0333	280	29,8667
10	0,21333	55	17,5667	300	29,9667
12	0,5	60	18,8667	350	30,3667
14	2,8	70	20,8667	400	30,8
16	1,51667	80	22,4333	450	31,2
18	2,13333	90	23,5667	500	31,4333
20	2,96667	100	24,5333	550	32,3333
22	3,76667	120	25,9667	600	33,8
24	4,53333	140	27	650	35,3667
26	5,53333	160	27,7667		
28	6,6	180	28,3333	_	_

[2-П4] Казанцев Е. Н. 1975.

T, K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
73	22	473	34
173	28	573	36
273	30	673	38
373	32		

[3-Π4] KnowledgeDoor 1980.

<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
10	0,3	70	22	160	27,3	273	29,7
20	3	80	23	180	28,1	280	29,8
30	8	90	23,6	200	28,7	293	29,9
40	13	100	24,2	220	29,1	273	30,2
50	17	120	25,3	240	29,4		
60	21	140	26,3	260	29,6		

[4-П4] Григорьев И. С., Мейлихов Е. З. 1991.

T, K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
5	0,016	200	28,8
10	0,21333	300	29,9667
30	8,26667	400	30,8
50	16,0333	500	31,4333
100	24,5333	650	35,3667

[5-П4] Бухмиров В. В., Ракутина Д. В., Солнышкова Ю. С. 2009.

T, K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
273	22	273	34
273	28	273	36
273	30	273	38
273	32		

[6-Π4] Kaye&Laby. 2010.

<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
100	24,5
200	28,6
293	30,2
500	32,8

Приложение 5

Первичные данные по теплоемкости Ті

[1-П5] Corruccini R. J., Gniewek J. J. 1960.

T,K	<i>С</i> , Дж К ⁻ моль ⁻¹	T,K	<i>С</i> , Дж К ⁻ моль ⁻¹	T,K	<i>С</i> , Дж К ⁻ моль ⁻¹
10	0,06031	70	9,04686	200	22,2582
15	0,15796	80	11,0094	220	22,9762
20	0,33507	90	12,7805	240	23,5984
25	0,64142	100	14,3601	260	24,125
30	1,17274	120	16,8492	280	24,6036
40	2,73321	140	18,716	300	24,9866
50	4,74841	160	20,1999		
60	7,02209	180	21,3487		

[2-П5] Чиркин В.С. 1968.

T,K	C , Дж K^{-1} моль	T,K	C , Дж K^{-1} моль
373	27,2363	773	28,8159
423	27,4278	823	29,0074
473	27,6671	873	29,151
523	27,8586	923	29,2946
573	28,0501	973	29,4382
623	28,2415	1023	29,5339
673	28,433	1073	29,6775
723	28,6245		

[3-П5] Казанцев Е. Н. 1975.

T,K		<i>C</i> , Дж К ⁻¹ моль ⁻¹	T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹
	273	25,4652	873	28,4809
	373	25,8482	1073	29,6297
	473	26,4705	1173	30,0605
	673	27,4757		

[4-П5] Chase M.W., Davies C.A., Downey J,R, Frurip D.J., McDonald R.A., Syverud A.N. 1985.

T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹	T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹
100	14,334	600	28,596
200	22,367	700	29,135
298,15	25,238	800	29,472
300	25,276	900	30,454
400	26,862	1000	32,074
500	27,877	1100	34,334

[5-П5] Григорьев И. С., Мейлихов Е. З. 1991.

T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹	T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹
20	0,33507	298,15	25,6
40	2,72842	400	26,2311
80	11,0094	600	28,5766
150	19,434	1000	32,741
250	23,8378		

[6-П5] Григорьев И. С., Мейлихов Е. З. 1991.

		С, Дж К-		С, Дж К-
T,K		1 моль -1	T,K	1 моль -1
	1	0,0034	5	0,0201
	2	0,00699	8	0,04021
	3	0,01082	10	0,06031
	4	0,01517	15	0,15796

[7-П5] Abu-eishah S. I., Haddad Y., Solieman A., Bajbouj A. 2004.

T,K		<i>C</i> , Дж K ⁻¹ моль ⁻¹
	350	24,177
	400	27,8844
	450	30,5012

[8-П5] Abu-eishah S. I., Haddad Y., Solieman A., Bajbouj A. 2004

T,K	<i>C</i> , Дж K ⁻¹ моль	T,K	<i>С</i> , Дж К ⁻¹ моль ⁻¹
184	21,2807	680,8	30,5639
237	23,5092	787,8	31,9869
306,5	25,2127	894,8	33,3898
376	26,6157	980	34,8128
483	28,0186	1076	36,5063
574	29,161	1124,7	37,3381

[9-Π5] KnowledgeDoor. 2008.

T,K		C , Дж K^{-1} моль $^{-1}$
	298,15	25,06

[10-П5] Бухмиров В. В., Ракутина Д. В., Солнышкова Ю. С. 2009.

T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹	T,K	<i>C</i> , Дж K ⁻¹ моль ⁻¹
273	25,4652	873	28,4809
373	25,8482	1073	29,6297
473	26,4705	1173	30,0605
673	27,4757		

Приложение 6

Первичные данные по коэффициенту теплового расширения Zn [1-П6] Hidnert P. 1943.

<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
193	5,5
293	8,3

[2-Π6] Hidnert P. 1943.

<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
333	9,3	573	9,4
373	8,9	673	9,8
473	9,5	773	10

[3-Π6] Hidnert P. 1943.

T, K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
333	9	573	9,8
373	9,2	773	10,1
473	9,7		

[4-Π6] Hidnert P. 1943.

T, K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
373	8,8	773	10
473	9,1	873	10,4
573	9,5	973	10,7
673	9,7		

[5-Π6] Hidnert P. 1943.

<i>T</i> , K	$0, 10^{-6} \text{ K}^{-}$	<i>T</i> , K	o, 10^{-6} K
373	9,2	573	9,7
473	9,5	973	10,4

[6-Π6] Hidnert P. 1943.

T, K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
373	9	673	9,7
473	9,4	873	10,1
573	9,7	973	10,5

[7-Π6] Hidnert P. 1943.

T, K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
373	9,4	573	9,9
473	9,8	973	10,5

[8-П6] Чиркин В.С. 1968.

<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹		
293	8,4		

[9-П6] Новикова С.И. 1974

<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
10	0,03	130	5,61	400	8,82
12	0,04	140	5,9	450	9,08
16	0,09	150	6,17	500	9,34
20	0,1	160	6,42	550	9,6
30	0,5	170	6,65	600	9,86
40	1,1	180	6,86	650	10,12
50	1,76	190	7,05	700	10,39
60	2,51	200	7,23	750	10,67
70	3,16	220	7,55	800	10,96
80	3,71	240	7,81	850	11,25
90	4,18	260	8,02	900	11,54
100	4,59	280	8,18	950	11,84
110	4,96	300	8,3	1000	12,08
120	5,3	350	8,56		

[10-П6] Казанцев Е. Н. 1975.

T, K	o, 10 ⁻⁶ K ⁻¹	<i>T</i> , K	o, 10 ⁻⁶ K ⁻¹
273	7,7	673	9,2
373	8,1	873	10
473	8,5	973	10,4

[11-П6] Григорьев И. С., Мейлихов Е. З. 1991.

T, K	o, 10 ⁻⁶ K	<i>T</i> , K	o, 10 ⁻⁶ K
10	0,03	400	8,82
30	0,5	500	9,34
50	1,76	600	9,86
100	4,59	800	10,96
200	7,23	1000	12,08
300	8,3		

[12-П6] Бухмиров В. В., Ракутина Д. В., Солнышкова Ю. С. 2009.

T, K	o, 10 ⁻⁶ K	<i>T</i> , K	o, 10 ⁻⁶ K
273	7,7	673	9,2
373	8,1	873	10
473	8,5	973	10,4

Приложение 7

[1-П7] Трендовые значения теплоемкости С (Дж·К $^{-1}$ ·моль $^{-1}$), ОКТР ($10^{-6}~{\rm K}^{-1}$) магния.

<i>T</i> , K	C	О	<i>T</i> , K	С	О	<i>T</i> , K	С	О
5	0,010695	0,00983	110	16,8569	16,5	300	24,9858	25,378
10	0,046183	0,05	120	18,0115	17,6	350	25,4023	26,05
15	0,140981	0,225	130	18,8744	18,5	400	26,0844	26,85
20	0,364605	0,4	140	19,7373	19,4	450	26,4941	27,65
25	0,777824	0,875	150	20,345	20,2	450	26,4941	27,65
30	1,434113	1,35	160	20,9526	20,898	500	27,0385	28,55
35	2,309165	2,325	170	21,4786	21,36	550	27,4901	29,55
40	3,354366	3,3	180	21,9006	21,902	600	27,9416	30,55
45	4,533256	4,5	190	22,2774	22,46	650	28,3364	31,55
50	5,712145	5,7	200	22,6541	22,78	700	28,992	32,8038
55	6,939649	6,9	210	22,9337	23,145	750	29,5171	33,9306
60	8,167152	8,1	220	23,2132	23,469	800	30,0423	35,0575
65	9,309581	9,2	230	23,4563	23,715	850	30,5674	36,3236
70	10,45201	10,3	240	23,6993	24,24	900	31,0926	37,5898
75	11,46075	11,25	250	23,9059	24,46	950	31,6178	38,6565
80	12,46949	12,2	260	24,1125	24,68	1000	32,1429	40,122
85	13,3567	13,05	270	24,2948	24,805	1050	32,4164	41,0355
90	14,2439	13,9	270	24,2948	24,805	1100	32,6898	41,875
95	14,97311	14,65	280	24,635	25,13			
100	15,70232	15,4	290	24,7581	25,255			

Приложение 8 $(\text{Пж-K}^{-1} \cdot \text{моль}^{-1})$. ОКТР

[1-П8] Трендовые значения теплоемкости С (Дж·К $^{-1}$ ·моль $^{-1}$), ОКТР (10 $^{-6}$ К $^{-1}$) цинка

<i>T</i> , K	C	О	<i>T</i> , K	C	О	<i>T</i> , K	C	О
5	0,012488	0,016	90	18,11026	22,03583	250	24,8444	29,7
10	0,16345	0,142222	95	18,6333	22,41701	260	24,97516	29,96167
15	0,725718	0,593	100	19,15634	23,35242	270	25,07903	29,9725
20	1,66719	2,1	110	20,00628	24,24038	280	25,18289	29,83333
25	3,20362	3,9158	120	20,85622	25,36333	290	25,24207	30,39
30	4,96888	6,135	130	21,44464	26,01417	300	25,42662	30,49667
35	6,57069	8,14	140	22,03306	26,65	350	25,91988	30,93333
40	8,1725	10	150	22,45803	27,02917	400	26,38374	31,65
45	9,67624	11,4	160	22,883	27,53333	450	27,04956	32,35
50	11,17998	13,5715	170	23,2099	27,875	500	27,6144	33,13333
55	12,38951	15,13581	180	23,5368	28,32167	550	28,11964	34,31667
60	13,59904	16,26333	190	23,76563	28,64708	600	28,62488	35,715
65	14,51436	17,58383	200	23,99446	28,8725	650	29,30892	37,14333
70	15,42968	18,81333	210	24,1906	29,29125	673	29,54615	37,7
75	16,14886	19,68075	220	24,38674	29,41	696	29,78339	38,41333
80	16,86804	20,58317	230	24,55019	29,24167			
85	17,48915	21,171	240	24,71364	29,58333			

Приложение 9

[1-П9] Трендовые значения теплоемкости С (Дж·К $^{-1}$ ·моль $^{-1}$), ОКТР (10 $^{-6}$ К $^{-1}$) титана

<i>T</i> , K	С	О						
5	0,025186	0,015	100	14,35	4,559	290	24,91	7,99
10	0,0603124	0,03	110	15,6	4,96	300	25,22	8,031
15	0,1579611	0,065	120	16,85	5,3	350	26,1	8,36
20	0,335069	0,1	130	17,78	5,61	400	26,99	8,82
25	0,6414178	0,23	140	18,72	5,9	450	27,8	9,161
30	1,1727415	0,385	150	19,43	6,17	500	28,07	9,276
35	1,9517769	0,648	160	20,2	6,42	550	28,35	9,459
40	2,7308124	0,902	170	20,77	6,65	600	28,88	9,731
45	3,7396094	1,232	180	21,35	6,86	650	29,29	9,868
50	4,7484064	1,566	190	21,8	6,905	700	29,7	10,08
55	5,8852477	1,901	200	22,31	7,03	750	30,23	10,3
60	7,0220889	2,234	210	22,64	7,19	800	30,76	10,49
65	8,034476	2,584	220	22,98	7,294	850	31,17	10,69
70	9,046863	2,9	230	23,29	7,418	900	31,58	10,91
75	10,028137	3,244	240	23,6	7,486	950	32	11,13
80	11,00941	3,471	250	23,84	7,572	1000	32,41	11,35
85	11,89495	3,789	260	24,12	7,758	1050	33,18	11,57
90	12,780489	4,018	270	24,36	7,789			
95	13,56377	4,239	280	24,6	7,892			