Please use this identifier to cite or link to this item: http://elar.uspu.ru/handle/uspu/5275
Title: On the Melting Process of Solids
Authors: Koebler, U.
Bodryakov, V. Yu
Issue Date: 2015
Publisher: INT CENTER APPLIED THERMODYNAMICS
Citation: Koebler U. On the Melting Process of Solids / U. Koebler, V. Yu Bodryakov // International journal of thermodynamics. — 2015. — Vol. 18, iss. 3. — P. 200-204.
Abstract: High temperature heat capacity data of the same solid reported by different authors can differ from each other by much more than can reasonably be attributed to the experimental errors, and seem to have a systematic origin. In this communication it will be shown that each individual data set can adequately be described by a "critical" power function of type similar to(T-m-T)(alpha) plus an absolute constant (T-m=melting temperature). Commonly the critical power function holds for all heat capacity data beyond the atomistic Dulong-Petit (D-P) limit. Within the large critical range crossover phenomena between different power functions with different exponents a can additionally occur. For the asymptotic power functions (T -> T-m) exponents near to the rational numbers of alpha=2/3, 1 and 3/2 are identified. For the non asymptotic power functions the identified exponents are alpha=0 (logarithmic divergence), 1/2 and 2. Quite generally, a large validity range of the critical power function indicates that the heat capacity is not of atomistic origin but has to be attributed to a field of freely propagating bosons. This view is in analogy to the main issue of Renormalization Group (RG) theory that the dynamics in the vicinity of the magnetic ordering transition is not due to exchange interactions between spins but due to a boson guiding field. The postulated bosons at melting transition are not specified as yet but they are evidently excitations of the continuous solid with energies of much larger than the atomistic excitations (phonons). The floating heat capacity near T-m can be explained by a mean free path of the bosons that is of the order of the linear dimension of the sample. The heat capacity of the field then depends on size, shape and surface quality of the sample. It therefore appears not possible to define an intrinsic behavior.
Keywords: HIGH TEMPERATURE HEAT CAPACITY
UNIVERSALITY
CRITICAL DYNAMICS
URI: http://elar.uspu.ru/handle/uspu/5275
DOI: 10.5541/ijot.5000101941
Appears in Collections:Научные публикации, проиндексированные в Scopus и Web of Science

Files in This Item:
There are no files associated with this item.
Show full item record




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.